Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
1196 1141 6081 -3508 1782 -891 -2043 35 5042 -1837 406 -3621 1987 1627 6692 -3999 679 -215 -2820 799 9957 5154 1302 6287 1891 2191 7336 -2351 881 388 -1936 1120 4438 -3495 1012 -3704 2879 1907 6451 -2814 1613 -40 -3086 292 5283 -1671 3529 -3191 2090 3278 5686 -1817 2322 -705 -1980 646 6077 2632 2356 -1717 1733 2232 6167 -4668 1694 589 -4163 174 5421 -38 3158 -4322 1920 2527 7755 -2567 -388 -2084 -2024 -131 5615 187 2054 -7172
# simulations
Significant digits
Bandwidth
(?)
Quantiles
P1 P5 Q1 Q3 P95 P99
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
Chart options
R Code
par4 <- 'P1 P5 Q1 Q3 P95 P99' par3 <- '0' par2 <- '5' par1 <- '750' par1 <- as.numeric(par1) par2 <- as.numeric(par2) if (par3 == '0') bw <- NULL if (par3 != '0') bw <- as.numeric(par3) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 library(modeest) library(lattice) library(boot) boot.stat <- function(s,i) { s.mean <- mean(s[i]) s.median <- median(s[i]) s.midrange <- (max(s[i]) + min(s[i])) / 2 s.mode <- mlv(s[i], method='mfv')$M s.kernelmode <- mlv(s[i], method='kernel', bw=bw)$M c(s.mean, s.median, s.midrange, s.mode, s.kernelmode) } (r <- boot(x,boot.stat, R=par1, stype='i')) bitmap(file='plot1.png') plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean') grid() dev.off() bitmap(file='plot2.png') plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median') grid() dev.off() bitmap(file='plot3.png') plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange') grid() dev.off() bitmap(file='plot7.png') plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode') grid() dev.off() bitmap(file='plot8.png') plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density') grid() dev.off() bitmap(file='plot4.png') densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean') dev.off() bitmap(file='plot5.png') densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median') dev.off() bitmap(file='plot6.png') densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange') dev.off() bitmap(file='plot9.png') densityplot(~r$t[,4],col='black',main='Density Plot',xlab='mode') dev.off() bitmap(file='plot10.png') densityplot(~r$t[,5],col='black',main='Density Plot',xlab='mode of kernel dens.') dev.off() z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5])) colnames(z) <- list('mean','median','midrange','mode','mode k.dens') bitmap(file='plot11.png') boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Bootstrap',10,TRUE) a<-table.row.end(a) if (par4 == 'P1 P5 Q1 Q3 P95 P99') { myq.1 <- 0.01 myq.2 <- 0.05 myq.3 <- 0.95 myq.4 <- 0.99 myl.1 <- 'P1' myl.2 <- 'P5' myl.3 <- 'P95' myl.4 <- 'P99' } if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') { myq.1 <- 0.005 myq.2 <- 0.025 myq.3 <- 0.975 myq.4 <- 0.995 myl.1 <- 'P0.5' myl.2 <- 'P2.5' myl.3 <- 'P97.5' myl.4 <- 'P99.5' } if (par4 == 'P10 P20 Q1 Q3 P80 P90') { myq.1 <- 0.10 myq.2 <- 0.20 myq.3 <- 0.80 myq.4 <- 0.90 myl.1 <- 'P10' myl.2 <- 'P20' myl.3 <- 'P80' myl.4 <- 'P90' } a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,myl.1,header=TRUE) a<-table.element(a,myl.2,header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,myl.3,header=TRUE) a<-table.element(a,myl.4,header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] p01 <- quantile(r$t[,1],myq.1)[[1]] p05 <- quantile(r$t[,1],myq.2)[[1]] p95 <- quantile(r$t[,1],myq.3)[[1]] p99 <- quantile(r$t[,1],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[1],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element( a,signif( sqrt(var(r$t[,1])),par2 ) ) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] p01 <- quantile(r$t[,2],myq.1)[[1]] p05 <- quantile(r$t[,2],myq.2)[[1]] p95 <- quantile(r$t[,2],myq.3)[[1]] p99 <- quantile(r$t[,2],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[2],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,2])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'midrange',header=TRUE) q1 <- quantile(r$t[,3],0.25)[[1]] q3 <- quantile(r$t[,3],0.75)[[1]] p01 <- quantile(r$t[,3],myq.1)[[1]] p05 <- quantile(r$t[,3],myq.2)[[1]] p95 <- quantile(r$t[,3],myq.3)[[1]] p99 <- quantile(r$t[,3],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[3],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,3])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode',header=TRUE) q1 <- quantile(r$t[,4],0.25)[[1]] q3 <- quantile(r$t[,4],0.75)[[1]] p01 <- quantile(r$t[,4],myq.1)[[1]] p05 <- quantile(r$t[,4],myq.2)[[1]] p95 <- quantile(r$t[,4],myq.3)[[1]] p99 <- quantile(r$t[,4],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[4],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,4])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode k.dens',header=TRUE) q1 <- quantile(r$t[,5],0.25)[[1]] q3 <- quantile(r$t[,5],0.75)[[1]] p01 <- quantile(r$t[,5],myq.1)[[1]] p05 <- quantile(r$t[,5],myq.2)[[1]] p95 <- quantile(r$t[,5],myq.3)[[1]] p99 <- quantile(r$t[,5],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[5],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,5])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation