Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
3167956.00 3001753.00 3571343.00 3990145.00 4472259.00 4487988.00 5021544.00 4877589.00 4563348.00 4452338.00 3535989.00 3454304.00 3331523.00 3213977.00 3896807.00 4121803.00 4566599.00 4529566.00 5172312.00 5121598.00 4713449.00 4656638.00 3647578.00 3545823.00 3388686.00 3348700.00 3973721.00 4156519.00 4713826.00 4704148.00 5175950.00 5025767.00 4600637.00 4560314.00 3443549.00 3333873.00 3072606.00 2891262.00 3390581.00 3888685.00 4173577.00 4130139.00 4851476.00 4811406.00 4322719.00 4274814.00 3355439.00 3293039.00 3114971.00 3049444.00 3697355.00 3213665.00 4447089.00 4442139.00 5119203.00 5058056.00 4623783.00 4666071.00 3719403.00 3440349.00 3466587.00 3251624.00 3921482.00 4466794.00 4916693.00 4939490.00 5627276.00 5540569.00 5128892.00 5024163.00 3807138.00 3777434.00 3675761.00 3552136.00 4177498.00 4568847.00 5027940.00 5078079.00 5759003.00 5671424.00 5239374.00 5100023.00 3944666.00 3858569.00 3670053.00 3563751.00 4341934.00 4779391.00 5440427.00 5404974.00 5934128.00 5942981.00 5477811.00 5288928.00 4099344.00 4103791.00
Sample Range:
(leave blank to include all observations)
From:
To:
# blockwidth
Chart options
R Code
par1 <- as.numeric(par1) (n <- length(x)) (np <- floor(n / par1)) arr <- array(NA,dim=c(par1,np+1)) darr <- array(NA,dim=c(par1,np+1)) ari <- array(0,dim=par1) dx <- diff(x) j <- 0 for (i in 1:n) { j = j + 1 ari[j] = ari[j] + 1 arr[j,ari[j]] <- x[i] darr[j,ari[j]] <- dx[i] if (j == par1) j = 0 } ari arr darr arr.mean <- array(NA,dim=par1) arr.median <- array(NA,dim=par1) arr.midrange <- array(NA,dim=par1) for (j in 1:par1) { arr.mean[j] <- mean(arr[j,],na.rm=TRUE) arr.median[j] <- median(arr[j,],na.rm=TRUE) arr.midrange[j] <- (quantile(arr[j,],0.75,na.rm=TRUE) + quantile(arr[j,],0.25,na.rm=TRUE)) / 2 } overall.mean <- mean(x) overall.median <- median(x) overall.midrange <- (quantile(x,0.75) + quantile(x,0.25)) / 2 bitmap(file='plot1.png') plot(arr.mean,type='b',ylab='mean',main='Mean Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.mean,0) dev.off() bitmap(file='plot2.png') plot(arr.median,type='b',ylab='median',main='Median Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.median,0) dev.off() bitmap(file='plot3.png') plot(arr.midrange,type='b',ylab='midrange',main='Midrange Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.midrange,0) dev.off() bitmap(file='plot4.png') z <- data.frame(t(arr)) names(z) <- c(1:par1) (boxplot(z,notch=TRUE,col='grey',xlab='Periodic Index',ylab='Value',main='Notched Box Plots - Periodic Subseries')) dev.off() bitmap(file='plot4b.png') z <- data.frame(t(darr)) names(z) <- c(1:par1) (boxplot(z,notch=TRUE,col='grey',xlab='Periodic Index',ylab='Value',main='Notched Box Plots - Differenced Periodic Subseries')) dev.off() bitmap(file='plot5.png') z <- data.frame(arr) names(z) <- c(1:np) (boxplot(z,notch=TRUE,col='grey',xlab='Block Index',ylab='Value',main='Notched Box Plots - Sequential Blocks')) dev.off() bitmap(file='plot6.png') z <- data.frame(cbind(arr.mean,arr.median,arr.midrange)) names(z) <- list('mean','median','midrange') (boxplot(z,notch=TRUE,col='grey',ylab='Overall Central Tendency',main='Notched Box Plots')) dev.off()
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation