Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
80 80 80 80 80 80 80 80 80 80 80 80 80 80 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 110 110 110 110 110 110 110 110 110 110 110 110 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 200 210
Chart options
R Code
library(Hmisc) m <- mean(x) e <- median(x) bitmap(file='test1.png') op <- par(mfrow=c(2,1)) mydensity1 <- density(x,kernel='gaussian',na.rm=TRUE) plot(mydensity1,main='Density Plot - Gaussian Kernel',xlab='Median (0 -> full line) | Mean (0 -> dashed line)',ylab='density') abline(v=e,lty=1) abline(v=m,lty=5) grid() myseq <- seq(0.01, 0.99, 0.01) hd <- hdquantile(x, probs = myseq, se = TRUE, na.rm = FALSE, names = TRUE, weights=FALSE) plot(myseq,hd,col=2,main='Harrell-Davis Quantiles',xlab='quantiles',ylab='Median (0 -> full) | Mean (0 -> dashed)') abline(h=m,lty=5) abline(h=e,lty=1) grid() par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Median versus Mean',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,mean(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) a<-table.element(a,median(x)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation