Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
85.13 85.54 85.47 85.78 86.07 86.05 86.32 86.43 86.41 86.38 86.59 86.68 86.87 87.32 87.13 87.42 87.22 87.17 87.52 87.49 87.53 87.93 88.54 88.96 89.3 90.01 90.52 90.64 91.25 91.59 92.09 91.81 92.03 92.15 91.98 92.11 92.28 92.53 91.97 92.05 91.87 91.49 91.48 91.63 91.46 91.61 91.7 91.87 92.21 92.65 92.83 93.02 93.33 93.35 93.45 93.51 93.8 93.94 94.02 94.26 94.71 95.26 95.54 95.69 96.03 96.4 96.55 96.45 96.65 96.84 97.21 97.31 97.91 98.51 98.54 98.52 98.66 98.53 98.71 98.92 98.96 99.25 99.32 99.41 99.36 99.58 99.77 99.77 100.03 100.2 100.24 100.1 100.03 100.18 100.29 100.41 100.6 100.75 100.79 100.44 100.29 100.34 100.46 100.12 100.06 100.28 100.28 100.4
# simulations
blockwidth of bootstrap
Significant digits
Quantiles
P1 P5 Q1 Q3 P95 P99
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
bandwidth
Chart options
R Code
par4 <- 'P1 P5 Q1 Q3 P95 P99' par3 <- '5' par2 <- '12' par1 <- '50' par1 <- as.numeric(par1) par2 <- as.numeric(par2) par3 <- as.numeric(par3) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 if (par2 < 3) par2 = 3 if (par2 > length(x)) par2 = length(x) library(modeest) library(lattice) library(boot) boot.stat <- function(s) { s.mean <- mean(s) s.median <- median(s) s.midrange <- (max(s) + min(s)) / 2 s.mode <- mlv(s,method='mfv')$M s.kernelmode <- mlv(s, method='kernel')$M c(s.mean, s.median, s.midrange, s.mode, s.kernelmode) } (r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed')) bitmap(file='plot1.png') plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean') grid() dev.off() bitmap(file='plot2.png') plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median') grid() dev.off() bitmap(file='plot3.png') plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange') grid() dev.off() bitmap(file='plot7a.png') plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode') grid() dev.off() bitmap(file='plot8a.png') plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density') grid() dev.off() bitmap(file='plot4.png') densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean') dev.off() bitmap(file='plot5.png') densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median') dev.off() bitmap(file='plot6.png') densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange') dev.off() z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5]) ) colnames(z) <- list('mean','median','midrange','mode','mode.k.dens') bitmap(file='plot7.png') boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() if (par4 == 'P1 P5 Q1 Q3 P95 P99') { myq.1 <- 0.01 myq.2 <- 0.05 myq.3 <- 0.95 myq.4 <- 0.99 myl.1 <- 'P1' myl.2 <- 'P5' myl.3 <- 'P95' myl.4 <- 'P99' } if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') { myq.1 <- 0.005 myq.2 <- 0.025 myq.3 <- 0.975 myq.4 <- 0.995 myl.1 <- 'P0.5' myl.2 <- 'P2.5' myl.3 <- 'P97.5' myl.4 <- 'P99.5' } if (par4 == 'P10 P20 Q1 Q3 P80 P90') { myq.1 <- 0.10 myq.2 <- 0.20 myq.3 <- 0.80 myq.4 <- 0.90 myl.1 <- 'P10' myl.2 <- 'P20' myl.3 <- 'P80' myl.4 <- 'P90' } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Blocked Bootstrap',10,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,myl.1,header=TRUE) a<-table.element(a,myl.2,header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,myl.3,header=TRUE) a<-table.element(a,myl.4,header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] p01 <- quantile(r$t[,1],myq.1)[[1]] p05 <- quantile(r$t[,1],myq.2)[[1]] p95 <- quantile(r$t[,1],myq.3)[[1]] p99 <- quantile(r$t[,1],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[1],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element( a,signif( sqrt(var(r$t[,1])),par3 ) ) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] p01 <- quantile(r$t[,2],myq.1)[[1]] p05 <- quantile(r$t[,2],myq.2)[[1]] p95 <- quantile(r$t[,2],myq.3)[[1]] p99 <- quantile(r$t[,2],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[2],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,2])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'midrange',header=TRUE) q1 <- quantile(r$t[,3],0.25)[[1]] q3 <- quantile(r$t[,3],0.75)[[1]] p01 <- quantile(r$t[,3],myq.1)[[1]] p05 <- quantile(r$t[,3],myq.2)[[1]] p95 <- quantile(r$t[,3],myq.3)[[1]] p99 <- quantile(r$t[,3],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[3],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,3])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode',header=TRUE) q1 <- quantile(r$t[,4],0.25)[[1]] q3 <- quantile(r$t[,4],0.75)[[1]] p01 <- quantile(r$t[,4],myq.1)[[1]] p05 <- quantile(r$t[,4],myq.2)[[1]] p95 <- quantile(r$t[,4],myq.3)[[1]] p99 <- quantile(r$t[,4],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[4],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,4])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode k.dens',header=TRUE) q1 <- quantile(r$t[,5],0.25)[[1]] q3 <- quantile(r$t[,5],0.75)[[1]] p01 <- quantile(r$t[,5],myq.1)[[1]] p05 <- quantile(r$t[,5],myq.2)[[1]] p95 <- quantile(r$t[,5],myq.3)[[1]] p99 <- quantile(r$t[,5],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[5],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,5])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation