Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
20 25 15 15 25 25 25 21 30 25 20 40 13 30 25 20 25 20 25 20 20 15 15 12 20 5 20 15 25 22 20 22 25 20 20 35 30 25 20 20 20 25 25 15 20 35 25 25 30 23 10 22 25 25 22 30 20 25 25 22 25 25 25 22 25 12 18 20 20 22 30 25 22 20 50 30 25 20 30 22 25 30 22 25 22 22 25 25 25 20 22 15 20 30 20 25 30 35 22 12 30 15 10 30 9 25 20 20 35 25 35 30 12 25 15 25 25 20 20 6 15 40 20 40 25 25 20 15 15 22 24 22 20 25 25 25 35 40 20 22 22 20 25 25 18 25 20 25 30 20 22 35 22 25 25 25 25 22 23 35 15 25 18 22 25 25 28 30 20 25 25 30 22 30 10 10 25 20 22 25 25 15 22 25 25 28 22 30 25 20 25 25 20 30 20 30 50 19 20 28 20 25 35 25 25 15 16 20 20 25 30 20 25 25 25 20 20 25 25 30 22 20 25 25 18 18 20 25 25 30 25 20 25 20 20 20 22 18 22 20 15 25 25 20 25 15 22 25 25 15 12 25 30 22 15 22 25 12 18 30 25 25 40 24 25 15 25 20 25 25 25 20 30 20 25 30 22 25 25 25 50 19 50 25 35 20 20 20 20 20 25 25 25 20 20 20 20 25 18 25 22 22 30 30 8 20 25 30 50 22 20 10 25 25 25 25 18 25 20 25 30 18 20 25 22 22 20 20 25 20 20 20 20 25 20 10 20 25 30 25 50 30 30 50 15 25 25 22 20 22 30 25 18 22 22 30 40 25 20 10 20 9 15 20 15 20 30 12 15 12 20 15 12 25 20 25 25 25 30 20 25 15 15 22 10 15 10 20 25 20 20 38 20 20 20 40 25 25 30 25 10 20 25 12 15 25 20 22 22 20 25 25 25 15 40 20 20 16 25 15 20 25 20 30 50 20 25 20 30 30 25 25 12 25 25 25 20 20 20 15 20 25 15 25 50 30 20 20 25 12 15 20 20 35 22 15 18 30 22 12 12 20 20 15 25 15 20 20 25 18 30 20 25 25 25 20 20 25 20 22 15 15 22 20 10 25 20 20 15 12 20 5 20 15 15 25 25 25 15 25 22 25 20 18 22 25 35 25 25 25 35 30 22 30 50 15 25 24 20 25 25 25 12 15 22 25 25 25 25 15 20 20 15 35 30 20 22 65 20 25 22 20 25 25 20 25 15 20 12 15 10 25 15 30 35 25 25 25 25 25 40 40 25 25 20 25 25 22 25 30 25 25 30 25 25 30 25 25 20 22 22 20 25 22 25 22 40 25 25 25 22 20 35 20 35 25 22 25 25 25 25 25 40 25 30 25 20 25 25 30 22 22 20 15 15 25 25 20 20 15 25 15 20 22 25 15 15 18 5 15 25 18 40 25 25 20 30 20 25 25 25 22 22 25 25 30 25 25 25 25 20 20 25 25 25 25 20 30 25 22 30 20 20 30 25 25 30 20 25 25 24 25 30 18 15 22 22 25 22 22 25 15 20 22 18 35 20 20 20 25 25 30 15 25 22 26 25 20 25 25 25 22 25 25 20 22 30 15 30 25 20 25 25 35 22 20 25 20 20 18 20 22 25 10 20 25 20 20 30 25 20 15 20 25 10 20 25 22 22 25 25 15 25 20 10 25 16 25 35 25 15 25 25 30 25 10 22 20 25 20 20 25 22 18 30 19 25 20 25 20 25 20 22 12 30 12 22 25 25 25 25 30 30 10 22 22 25 20 22 20 25 20 15 25 20 25 20 30 15 40 25 20 22 22 30 20 40 20 25 20 25 20 50 50 25 25 40 30 22 30 20 25 25 30 25 25 20 18 18 28 25 22 15 40 40 12 12 18 12 25 26 18 25 22 15 25 15 15 15 25 15 12 22 20 20 25 20 12 9 15 12 15 25 20 20 15 15 30 21 25 22 22 50 15 25 15 25 22 18 50 20 50 20 20 30 25 20 22 25 50 40 25 25 25 25 30 40 25 30 20
# simulations
Significant digits
Bandwidth
(?)
Quantiles
P1 P5 Q1 Q3 P95 P99
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
Chart options
R Code
par4 <- 'P1 P5 Q1 Q3 P95 P99' par3 <- '0' par2 <- '5' par1 <- '50' par1 <- as.numeric(par1) par2 <- as.numeric(par2) if (par3 == '0') bw <- NULL if (par3 != '0') bw <- as.numeric(par3) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 library(modeest) library(lattice) library(boot) boot.stat <- function(s,i) { s.mean <- mean(s[i]) s.median <- median(s[i]) s.midrange <- (max(s[i]) + min(s[i])) / 2 s.mode <- mlv(s[i], method='mfv')$M s.kernelmode <- mlv(s[i], method='kernel', bw=bw)$M c(s.mean, s.median, s.midrange, s.mode, s.kernelmode) } x<-na.omit(x) (r <- boot(x,boot.stat, R=par1, stype='i')) bitmap(file='plot1.png') plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean') grid() dev.off() bitmap(file='plot2.png') plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median') grid() dev.off() bitmap(file='plot3.png') plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange') grid() dev.off() bitmap(file='plot7.png') plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode') grid() dev.off() bitmap(file='plot8.png') plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density') grid() dev.off() bitmap(file='plot4.png') densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean') dev.off() bitmap(file='plot5.png') densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median') dev.off() bitmap(file='plot6.png') densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange') dev.off() bitmap(file='plot9.png') densityplot(~r$t[,4],col='black',main='Density Plot',xlab='mode') dev.off() bitmap(file='plot10.png') densityplot(~r$t[,5],col='black',main='Density Plot',xlab='mode of kernel dens.') dev.off() z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5])) colnames(z) <- list('mean','median','midrange','mode','mode k.dens') bitmap(file='plot11.png') boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Bootstrap',10,TRUE) a<-table.row.end(a) if (par4 == 'P1 P5 Q1 Q3 P95 P99') { myq.1 <- 0.01 myq.2 <- 0.05 myq.3 <- 0.95 myq.4 <- 0.99 myl.1 <- 'P1' myl.2 <- 'P5' myl.3 <- 'P95' myl.4 <- 'P99' } if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') { myq.1 <- 0.005 myq.2 <- 0.025 myq.3 <- 0.975 myq.4 <- 0.995 myl.1 <- 'P0.5' myl.2 <- 'P2.5' myl.3 <- 'P97.5' myl.4 <- 'P99.5' } if (par4 == 'P10 P20 Q1 Q3 P80 P90') { myq.1 <- 0.10 myq.2 <- 0.20 myq.3 <- 0.80 myq.4 <- 0.90 myl.1 <- 'P10' myl.2 <- 'P20' myl.3 <- 'P80' myl.4 <- 'P90' } a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,myl.1,header=TRUE) a<-table.element(a,myl.2,header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,myl.3,header=TRUE) a<-table.element(a,myl.4,header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] p01 <- quantile(r$t[,1],myq.1)[[1]] p05 <- quantile(r$t[,1],myq.2)[[1]] p95 <- quantile(r$t[,1],myq.3)[[1]] p99 <- quantile(r$t[,1],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[1],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element( a,signif( sqrt(var(r$t[,1])),par2 ) ) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] p01 <- quantile(r$t[,2],myq.1)[[1]] p05 <- quantile(r$t[,2],myq.2)[[1]] p95 <- quantile(r$t[,2],myq.3)[[1]] p99 <- quantile(r$t[,2],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[2],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,2])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'midrange',header=TRUE) q1 <- quantile(r$t[,3],0.25)[[1]] q3 <- quantile(r$t[,3],0.75)[[1]] p01 <- quantile(r$t[,3],myq.1)[[1]] p05 <- quantile(r$t[,3],myq.2)[[1]] p95 <- quantile(r$t[,3],myq.3)[[1]] p99 <- quantile(r$t[,3],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[3],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,3])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode',header=TRUE) q1 <- quantile(r$t[,4],0.25)[[1]] q3 <- quantile(r$t[,4],0.75)[[1]] p01 <- quantile(r$t[,4],myq.1)[[1]] p05 <- quantile(r$t[,4],myq.2)[[1]] p95 <- quantile(r$t[,4],myq.3)[[1]] p99 <- quantile(r$t[,4],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[4],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,4])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode k.dens',header=TRUE) q1 <- quantile(r$t[,5],0.25)[[1]] q3 <- quantile(r$t[,5],0.75)[[1]] p01 <- quantile(r$t[,5],myq.1)[[1]] p05 <- quantile(r$t[,5],myq.2)[[1]] p95 <- quantile(r$t[,5],myq.3)[[1]] p99 <- quantile(r$t[,5],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[5],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,5])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation