Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
342 0 0 348 0 0 340 0 0 349 0 0 348 0 0 341 0 0 320 0 0 359 0 0 344 0 0 344 0 0 357 0 0 350 0 0 297 0 0 330 0 0 365 0 0 335 0 0 318 0 0 342 0 0 331 0 0 322 0 0 356 0 0 294 0 0 332 0 0 300 0 0 306 0 0 326 0 0 293 0 0 275 0 0 328 0 0 305 0 0 338 0 0 326 0 0 280 0 0 290 0 0 317 0 0 311 0 0 288 0 0 298 0 0 281 0 0 290 0 0 287 0 0 281 0 0 336 0 0 289 0 0 296 0 0 321 0 0 321 0 0 312 0 0 290 0 0 290 0 0 327 0 0 333 0 0 322 0 0 325 0 0 305 0 0 297 0 0 319 0 0 297 0 0 294 0 0 337 0 0 298 0 0 326 0 0 291 0 0 286 0 0 303 0 0 294 0 0 305 0 0 290 0 0 287 0 0 303 0 0 289 0 0 338 0 0 289 0 0 317 0 0 305 0 0 318 0 0 286 0 0 300 0 0 271 0 0 310 0 0 336 0 0 311 0 0 316 0 0 278 0 0 294 0 0 301 0 0 334 0 0 355 0 0 293 0 0 295 0 0 350 0 0 303 0 0 333 0 0 317 0 0 303 0 0 310 0 0 319 0 0 299 0 0 302 0 0 337 0 0 295 0 0 351 0 0 311 0 0 269 0 0 300 0 0 319 0 0 287 0 0 360 0 0 301 0 0 288 0 0 281 0 0 308 0 0 295 0 0 304 0 0 299 0 0 295 0 0 279 0 0 292 0 0 301 0 0 305 0 0 300 0 0 295 0 0 255 0 0 261 0 0 290 0 0 283 0 0 286 0 0 282 0 0 282 0 0 279 0 0 299 0 0 270 0 0 283 0 0 318 0 0 328 0 0 294 0 0 281 0 0 280 0 0 257 0 0 260 0 0 246 0 0 257 0 0 273 0 0 297 0 0 265 0 0 279 0 0 251 0 0 277 0 0 272 0 0 267 0 0 241 0 0 248 0 0 252 0 0 276 0 0 275 0 1 252 0 0 265 0 0 214 0 0 262 0 0 234 0 0 280 0 0 258 0 0 262 0 0 264 0 0 253 1 0 255 0 0 264 0 0 270 0 0 252 0 0 290 0 0 231 0 0 257 0 0 280 0 0 273 0 0 262 0 0 288 0 0 270 0 0 267 0 0 281 0 0 278 0 0 257 0 0 287 0 0 264 0 0 294 0 0 252 0 0 264 0 0 259 0 0 266 0 0 241 0 0 231 0 0 276 0 0 260 0 0 295 0 0 248 0 0 241 0 0 247 0 0 240 0 0 283 0 0 234 0 0 268 0 0 219 0 0 220 0 0 216 0 0 236 0 0 255 0 0 275 0 0 287 0 0 272 0 0 271 0 0 284 0 0 297 0 0 301 0 0 323 0 0 330 0 0 281 0 0 244 0 0 291 0 0 250 0 0 264 0 0 251 0 0 250 0 0 241 0 0 237 0 0 211 0 0 247 0 0 259 0 0 242 0 0 234 0 0 236 0 0 250 0 0 251 0 0 259 0 0 247 0 0 264 0 0 236 0 0 238 0 0 234 0 0 243 0 0 255 0 0 248 0 0 269 0 0 252 0 0 289 0 0 246 0 0 255 0 0 248 0 0 250 0 0 240 0 0 248 0 0 265 0 0 217 0 0 247 0 0 275 0 0 246 0 0 229 0 0 255 0 0 260 0 0 224 0 0 270 0 0 236 0 0 257 0 0 278 0 0 269 0 0 252 0 0 249 0 0 269 0 0 263 0 0 278 0 0 285 0 0 261 0 0 236 0 0 253 0 0 277 0 0 292 0 0 306 0 0 240 0 0 263 0 0 246 0 0 222 0 0 288 0 0 314 0 0 279 0 0 289 0 0 289 0 0 270 0 0 265 0 0 294 0 0 272 0 0 251 0 0 266 0 0 273 0 0 258 0 0 285 0 0 257 0 0 294 0 0 281 0 0 255 0 0 244 0 0 267 0 0 295 0 0 252 0 0 294 0 0 293 0 0 296 0 0 288 0 0 274 0 0 272 0 0 292 0 0 273 0 0 295 0 0 314 0 0 295 0 0 295 0 0 245 0 0 294 0 0 292 0 0 269 0 0 288 0 0 284 0 0 277 0 0 253 0 0 282 0 0 255 0 0 255 0 0 307 0 0 307 0 0 292 0 0 301 0 0 281 0 0 292 0 0 295 0 0 293 0 0 305 0 0 310 0 0 270 0 0 272 0 0 313 0 0 300 0 0 304 0 0 370 0 0 327 0 0 283 0 0 316 0 0 288 0 0 331 0 0 307 0 0 298 0 0 325 0 0 278 0 0 300 0 0 307 0 0 326 0 0 356 0 0 325 0 0 299 0 0 298 0 0 302 0 0 284 0 0 343 0 0 297 0 0 337 0 0 334 0 0 320 0 0 319 0 0 323 0 0 318 0 0 310 0 0 322 0 0 310 0 0 344 0 0 366 0 0 320 0 0 381 0 0 365 0 0 347 0 0 367 0 0 320 0 0 379 0 0 375 0 0 355 0 0 382 0 0 379 0 0 390 0 0 375 0 0 377 0 0 382 0 0 390 0 0 359 0 0 390 0 0 369 0 0 345 0 0 378 0 0 371 0 0 359 0 0 334 0 0 375 0 0 372 0 0 336 0 0 360 0 0 387 0 1 356 0 0 408 0 0 346 0 0 366 0 0 378 0 0 382 0 0 361 0 0 359 0 0 371 0 0 363 1 0 344 0 0 328 0 0 313 0 0 340 0 0 347 0 0 300 0 0 295 0 0 325 0 0 328 0 0 318 0 0 327 0 0 306 0 0 347 0 0 377 0 0 331 0 0 313 0 0 291 0 0 311 0 1 311 0 0 331 0 0 316 0 0 311 0 0 313 0 0 294 0 0 268 0 0 282 0 0 302 0 0 312 1 0 295 0 0 258 0 0 300 0 0 298 0 0 252 0 0 293 0 0 298 0 0 267 0 0 261 0 0 260 0 0 283 0 0 299 0 0 262 0 0 297 0 0 266 0 0 284 0 0 255 0 0 303 0 0 269 0 0 295 0 0 257 0 0 271 0 0 282 0 0 302 0 0 284 0 0 264 0 0 324 0 0 282 0 0 299 0 0 253 0 0 253 0 0 281 0 0 267 0 0 300 0 0 312 0 0 263 0 0 261 0 0 274 0 0 310 0 0 269 0 0 278 0 0 291 0 0 286 0 0 246 0 0 268 0 0 268 0 0 254 0 0 285 0 0 278 0 0 252 0 0 264 0 0 231 0 0 238 0 0 270 0 0 229 0 0 276 0 0 252 0 0 241 0 0 253 0 0 282 0 0 264 0 0 266 0 0 256 0 0 252 0 0 213 0 0 262 0 0 263 0 0 280 0 0 275 0 0 264 0 0 260 0 0 230 0 0 290 0 0 282 0 0 249 0 0 279 0 0 265 0 0 250 0 0 260 0 0 272 0 0 297 0 0 257 0 0 247 0 0 266 0 0 252 0 0 259 0 0 265 0 0 305 0 0 257 0 0 274 0 0 253 0 0 248 0 0 275 0 0 276 0 0 271 0 0 253 0 0 257 0 0 298 0 0 231 0 0 230 0 0 247 0 0 265 0 0 289 0 0 268 0 0 295 0 0 296 0 0 289 0 0 281 0 0 284 0 0 283 0 0 288 0 0 294 0 0 251 0 0 263 0 0 240 0 0 236 0 0 227 0 0 264 0 0 261 0 0 249 0 0 266 0 0 270 0 0 269 0 0 281 0 0 290 0 0 280 0 0 240 0 0 232 0 0 241 0 0 257 0 0 296 0 0 269 0 0 240 0 0 232 0 0 226 0 0 259 0 0 295 0 0 272 0 0 271 0 0 247 0 0 246 0 0 239 0 0 262 0 0 259 0 0 293 0 0 302 0 0 289 0 0 245 0 0 237 0 0 261 0 0 228 0 0 269 0 0 246 0 0 234 0 0 241 0 0 245 0 0 264 0 0 215 0 0 253 0 0 316 0 0 231 0 0 218 0 0 255 0 0 292 0 0 243 0 0 278 0 0 244 0 0 252 0 0 227 0 0 222 0 0 264 0 0 263 0 0 266 0 0 253 0 0 252 0 0 248 0 0 237 0 0 261 0 0 259 0 0 272 0 0 254 0 0 258 0 0 260 0 0 238 0 0 229 0 0 249 0 0 280 0 0 260 0 0 275 0 0 248 0 0 262 0 0 270 0 0 283 0 0 265 0 0 264 0 0 279 0 0 239 0 0 243 0 0 248 0 0 273 0 0 256 0 0 275 0 0 267 0 0 241 0 0 269 0 0 278 0 0 258 0 0 280 0 0 294 0 0 274 0 0 263 0 0 265 0 0 265 0 0 275 0 0 276 0 0 248 0 0 277 0 0 278 0 0 253 0 0 292 0 0 285 0 0 352 0 0 296 0 0 297 0 0 284 0 0 303 0 0 280 0 0 276 0 0 290 0 0 292 0 0 295 0 0 294 0 0 267 0 0 299 0 0 259 0 1 304 0 0 269 0 0 294 0 0 281 0 0 276 0 0 295 0 0 291 0 0 248 0 0 256 0 0 283 1 0 311 0 0 276 0 0 288 0 0 296 0 0 289 0 0 268 0 0 277 0 0 283 0 0 306 0 0 278 0 0 280 0 0 261 0 0 299 0 0 296 0 0 277 0 0 279 0 0 276 0 0 284 0 0 291 0 0 274 0 0 292 0 0 265 0 0 294 0 0 274 0 0 284 0 0 296 0 0 268 0 0 309 0 0 266 0 0 276 0 0 277 0 0 279 0 0 280 0 0 302 0 0 311 0 0 311 0 0 303 0 0 364 0 0 354 0 0 331 0 0 370 0 0 306 0 0 274 0 0 296 0 0 325 0 0 340 0 0 339 0 0 333 0 0 325 0 0 324 0 0 315 0 0 291 0 0 328 0 0 341 0 0 353 0 0 327 0 0 299 0 0 341 0 0 313 0 0 341 0 0 361 0 0 379 0 0 346 0 0 312 0 0 300 0 0 368 0 0 326 0 0 333 0 0 341 0 0 317 0 0 329 0 0 289 0 0 313 0 0 335 0 0 272 0 0 349 0 0 339 0 0 326 0 0 292 0 0 313 0 0 323 0 0 331 0 0 320 0 0 340 0 0 325 0 0 296 0 0 318 0 0 308 0 0 326 0 0 302 0 0 306 0 0 311 0 0 280 0 0 353 0 0 320 0 0 306 0 0 332 0 0 321 0 0 319 0 0 309 0 0 342 0 0 288 0 0 313 0 0 315 0 0 320 0 0 335 0 0 297 0 0 327 0 0 268 0 0 321 0 0 286 0 0 323 0 0 309 0 0 282 0 0 289 0 0 310 0 0 321 0 0 326 0 0 326 0 0 286 0 0 286 0 0 313 0 0 282 0 0 288 0 0 316 0 0 297 0 0 304 0 0 292 0 0 292 0 0 302 0 0 289 0 0 312 0 0 267 0 0 312 0 0 262 0 0 303 0 0 303 0 0 288 0 0 282 0 0 320 0 0 279 0 0 249 0 0 246 0 0 305 0 0 297 0 0 291 0 0 255 0 0 274 0 0 250 0 0 268 0 0 299 0 0 303 0 0 269 0 0 282 0 0 250 0 0 277 0 0 273 0 0 279 0 0 253 0 0 277 0 0 286 0 0 262 0 0 299 0 0 256 0 0 310 0 0 272 0 0 274 0 0 289 0 0 297 0 0 258 0 0 285 0 0 263 0 0 256 0 0 291 0 0 271 0 0 281 0 0 247 0 0 283 0 0 278 0 0 297 0 0 298 0 0 274 0 0 266 0 0 271 0 0 282 0 0 296 0 0 263 0 0 287 0 0 280 0 0 301 0 0 280 0 0 288 0 0 289 0 0 276 0 0 280 0 0 270 0 0 250 0 0 233 0 0 261 0 0 287 0 0 290 0 0 312 0 0 315 0 0 278 0 0 286 0 0 303 0 0 260 0 0 275 0 0 290 0 0 263 0 0 241 0 0 250 0 0 235 0 0 226 0 0 242 0 0 270 0 0 278 0 0 261 0 0 224 0 0 276 0 0 265 0 0 298 0 0 254 0 0 320 0 0 274 0 0 274 0 0 306 0 0 330 0 0 294 0 0 292 0 0 363 0 0 348 0 0 267 0 0 278 0 0 301 0 0 255 0 0 284 0 0 294 0 0 330 0 0 321 0 0 330 0 0 284 0 0 271 0 0 255 0 0 262 0 0 247 0 0 222 0 0 260 0 0 318 0 0 291 0 0 259 0 0 222 0 0 244 0 0 248 0 0 255 0 0 257 0 0 251 0 0 245 0 0 271 0 0 212 0 0 261 0 0 247 0 0 283 0 1 244 0 0 264 0 0 271 0 0 247 0 0 229 0 0 278 0 0 269 0 0 272 0 0 261 0 0 251 1 0 263 0 0 222 0 0 259 0 0 234 0 0 266 0 0 255 0 0 267 0 0 272 0 0 300 0 0 288 0 0 261 0 0 248 0 0 249 0 0 246 0 0 278 0 0 228 0 0 246 0 0 270 0 0 243 0 0 255 0 0 285 0 0 248 0 0 257 0 0 252 0 0 263 0 0 271 0 0 270 0 0 274 0 0 258 0 0 238 0 0 302 0 0 293 0 0 283 0 0 273 0 0 271 0 0 253 0 0 236 0 0 261 0 0 275 0 0 319 0 0 307 0 0 281 0 0 270 0 0 268 0 0 306 0 0 275 0 0 259 0 0 267 0 0 304 0 0 281 0 0 260 0 0 283 0 0 292 0 0 266 0 0 298 0 0 291 0 0 267 0 0 258 0 0 252 0 0 257 0 0 250 0 0 263 0 0 262 0 0 261 0 0 268 0 0 274 0 0 271 0 0 316 0 0 274 0 0 262 0 0 271 0 0 282 0 0 277 0 0 286 0 0 267 0 0 285 0 0 306 0 0 309 0 0 275 0 0 261 0 0 284 0 0 288 0 0 296 0 0 280 0 0 268 0 0 278 0 0 300 0 0 273 0 0 266 0 0 261 0 0 287 0 0 297 0 0 288 0 0 236 0 0 287 0 0 283 0 0 298 0 0 313 0 0 269 0 0 239 0 0 250 0 0 278 0 0 307 0 0 292 0 0 312 0 0 283 0 0 274 0 0 290 0 0 309 0 0 327 0 0 305 0 0 288 0 0 327 0 0 301 0 0 314 0 0 304 0 0 321 0 0 321 0 0 309 0 0 287 0 0 316 0 0 324 0 0 326 0 0 317 0 0 358 0 0 318 0 0 333 0 0 312 0 0 309 0 0 320 0 0 338 0 0 340 0 0 340 0 0 326 0 0 339 0 0 331 0 0 320 0 0 320 0 0 344 0 0 334 0 0 331 0 0 331 0 0 368 0 0 365 0 0 301 0 0 344 0 0 350 0 0 319 0 0 287 0 0 300 0 0 336 0 0 361 0 0 377 0 0 328 0 0 294 0 0 327 0 0 316 0 0 312 0 0 323 0 0 341 0 0 310 0 0 313 0 0 276 0 0 275 0 0 324 0 0 276 0 0 317 0 0 303 0 0 273 0 0 262 0 0 275 0 0 311 0 0 297 0 0 316 0 0 327 0 0 327 0 0 291 0 0 303 0 0 299 0 0 292 0 0 284 0 0 288 0 0 305 0 0 295 0 0 311 0 0 292 0 0 309 0 0 310 0 0 296 0 0 287 0 0 263 0 0 274 0 0 268 0 0 314 0 0 312 0 0 317 0 0 295 0 0 273 0 0 286 0 0 281 0 0 269 0 0 275 0 0 305 0 0 288 0 0 268 0 0 305 0 0 313 0 0 305 0 0 325 0 0 325 0 0 297 0 0 274 0 0 299 0 0 318 0 0 302 0 0 282 0 0 298 0 0 300 0 0 278 0 0 308 0 0 269 0 0 330 0 0 282 0 0 319 0 0 286 0 0 255 0 0 263 0 0 319 0 0 295 0 0 282 0 0 296 0 0 295 0 0 264 0 0 282 0 0 254 0 0 275 0 0 314 0 0 302 0 0 283 0 0 226 0 0 249 0 0 260 0 0 284 0 0 277 0 0 296 0 0 268 0 0 264 0 0 252 0 0 270 0 0 293 0 0 322 0 0 332 0 0 307 0 0 270 0 0 295 0 0 283 0 0 273 0 0 298 0 0 275 0 0 273 0 0 237 0 0 278 0 0 283 0 1 235 0 0 258 0 0 291 0 0 264 0 0 273 0 0 304 0 0 310 0 0 304 0 0 255 0 0 293 1 0 247 0 0 249 0 0 248 0 0 271 0 0 246 0 0 255 0 0 283 0 0 285 0 0 284 0 0 266 0 0 289 0 0 280 0 0 277 0 0 284 0 0 306 0 0 257 0 0 279 0 0 262 0 0 291 0 0 288 0 0 272 0 0 319 0 0 286 0 0 276 0 0 265 0 0 272 0 0 274 0 0 283 0 0 247 0 0 253 0 0 259 0 0 268 0 0 277 0 0 268 0 0 277 0 0 284 0 0 255 0 0 252 0 0 268 0 0 273 0 0 280 0 0 265 0 0 256 0 0 238 0 0 297 0 0 384 0 0 315 0 0 249 0 0 262 0 0 269 0 0 261 0 0 274 0 0 261 0 0 285 0 0 310 0 0 308 0 0 275 0 0 257 0 0 266 0 0 263 0 0 255 0 0 252 0 0 256 0 0 261 0 0 245 0 0 284 0 0 254 0 0 254 0 0 238 0 0 265 0 0 238 0 0 257 0 0 272 0 0 252 0 0 255 0 0 241 0 0 262 0 0 242 0 0 253 0 0 282 0 0 244 0 0 312 0 0 285 0 0 277 0 0 302 0 0 229 0 0 257 0 0 263 0 0 263 0 0 302 0 0 278 0 0 280 0 0 235 0 0 233 0 0 249 0 0 237 0 0 300 0 0 257 0 0 246 0 0 248 0 0 232 0 0 289 0 0 317 0 0 250 0 0 277 0 0 245 0 0 248 0 0 240 0 0 240 0 0 250 0 0 260 0 0 274 0 0 315 0 0 277 0 0 248 0 0 257 0 0 262 0 0 271 0 0 271 0 0 292 0 0 231 0 0 252 0 0 273 0 0 263 0 0 269 0 0 275 0 0 258 0 0 232 0 0 252 0 0 256 0 0 251 0 0 272 0 0 266 0 0 256 0 0 266 0 0 281 0 0 290 0 0 289 0 0 326 0 0 294 0 0 289 0 0 246 0 0 277 0 0 273 0 0 270 0 0 266 0 0 266 0 0 289 0 0 250 0 0 299 0 0 269 0 0 295 0 0 271 0 0 268 0 0 276 0 0 236 0 0 247 0 0 288 0 0 265 0 0 284 0 0 309 0 0 260 0 0 277 0 0 291 0 0 293 0 0 322 0 0 254 0 0 315 0 0 321 0 0 289 0 0 318 0 0 307 0 0 281 0 0 311 0 0 305 0 0 320 0 0 274 0 0 257 0 0 286 0 0 293 0 0 298 0 0 281 0 0 266 0 0 256 0 0 290 0 0 303 0 0 278 0 0 324 0 0 333 0 0 279 0 0 270 0 0 273 0 0 342 0 0 272 0 0 282 0 0 296 0 0 286 0 0 276 0 0 265 0 0 341 0 0 318 0 0 340 0 0 309 0 0 294 0 0 292 0 0 300 0 0 339 0 0 320 0 0 305 0 0 310 0 0 315 0 0 293 0 0 315 0 0 327 0 0 332 0 0 323 0 0 328 0 0 288 0 0 290 0 0 359 0 0 328 0 0 365 0 0 345 0 0 317 0 0 335 0 0 334 0 0 303 0 0 331 0 0 320 0 0 347 0 0 349 0 0 337 0 0 334 0 0 314 0 0 397 0 1 312 0 0 326 0 0 326 0 0 304 0 0 307 0 0 310 0 0 314 0 0 308 0 0 356 0 0 312 1 0 305 0 0 313 0 0 334 0 0 291 0 0 334 0 0 368 0 0 290 0 0 302 0 0 313 0 0 334 0 0 337 0 0 310 0 0 307 0 0 315 0 0 316 0 0 314 0 0 303 0 0 336 0 0 360 0 0 324 0 0 367 0 0 342 0 0 326 0 0 330 0 0 344 0 0 340 0 0 349 0 0 396 0 0 378 0 0 308 0 0 393 0 0 397 0 0 396 0 0 400 0 0 391 0 0 388 0 0 352 0 0 407 0 0 365 0 0 403 0 0 401 0 0 387 0 0 461 0 0 346 0 0 387 0 0 408 0 0 370 0 0 386 0 0 382 0 0 360 0 0 357 0 0 356 0 0 348 0 0 353 0 0 344 0 0 357 0 0 368 0 0 354 0 0 345 0 0 362 0 0 318 0 0 380 0 0 360 0 0 344 0 0 318 0 0 303 0 0 322 0 0 322 0 0 328 0 0 302 0 0 341 0 0 244 0 0 309 0 0 334 0 0 328 0 0 333 0 0 324 0 0 307 0 0 271 0 0 314 0 0 298 0 1 297 0 0 291 0 0 300 0 0 312 0 0 287 0 0 310 0 0 305 0 0 333 0 0 285 0 0 318 1 0 291 0 0 280 0 0 269 0 0 305 0 0 327 0 0 318 0 0 327 0 0 290 0 0 274 0 0 271 0 0 313 0 0 299 0 0 279 0 0 332 0 0 246 0 0 287 0 0 310 0 0 302 0 0 302 0 0 318 0 0 300 0 0 287 0 0 272 0 0 281 0 0 267 0 0 312 0 0 342 0 0 296 0 0 264 0 0 258 0 0 279 0 0 260 0 0 266 0 0 282 0 0 262 0 0 258 0 0 272 0 0 312 0 0 307 0 0 286 0 0 346 0 0 291 0 0 276 0 0 268 0 0 291 0 0 282 0 0 287 0 0 265 0 0 267 0 0 246 0 0 266 0 0 263 0 0 279 0 0 285 0 0 289 0 0 277 0 0 260 0 0 244 0 0 285 0 0 253 0 0 249 0 0 268 0 0 288 0 0 266 0 0 236 0 0 298 0 0 277 0 0 282 0 0 280 0 0 264 0 0 255 0 0 246 0 0 274 0 0 296 0 0 278 0 0 320 0 0 307 0 0 291 0 0 250 0 0 239 0 0 278 0 1 268 0 0 268 0 0 320 0 0 240 0 0 251 0 0 273 0 0 303 0 0 256 0 0 268 0 0 231 1 0 268 0 0 217 0 0 235 0 0 243 0 0 245 0 0 265 0 0 256 0 0 263 0 0 267 0 0 261 0 0 285 0 0 273 0 0 307 0 0 334 0 0 313 0 0 268 0 0 238 0 0 246 0 0 268 0 0 246 0 0 268 0 0 266 0 0 239 0 0 275 0 0 263 0 0 246 0 0 275 0 0 248 0 0 267 0 0 260 0 0 246 0 0 268 0 0 263 0 0 268 0 0 255 0 0 256 0 0 282 0 0 334 0 0 309 0 0 258 0 0 271 0 0 274 0 0 265 0 0 243 0 0 250 0 0 269 0 0 256 0 0 206 0 0 264 0 0 242 0 0 244 0 0 236 0 0 288 0 0 257 0 0 245 0 0 262 0 0 259 0 0 243 0 0 262 0 0 295 0 0 263 0 0 254 0 0 270 0 0 258 0 0 243 0 0 280 0 0 258 0 0 258 0 0 239 0 0 261 0 0 265 0 0 227 0 0 280 0 0 313 0 0 261 0 0 291 0 0 308 0 0 299 0 0 244 0 0 286 0 0 308 0 0 273 0 0 283 0 0 299 0 0 289 0 0 277 0 0 281 0 0 281 0 0 311 0 0 266 0 0 293 0 0 282 0 0 251 0 0 279 0 0 278 0 0 276 0 0 300 0 0 332 0 0 297 0 0 288 0 0 293 0 0 293 0 0 291 0 0 288 0 0 301 0 0 277 0 0 275 0 0 288 0 0 315 0 0 294 0 0 300 0 0 278 0 0 259 0 0 273 0 0 276 0 0 325 0 0 300 0 0 309 0 0 310 0 0 310 0 0 265 0 0 320 0 0 274 0 0 302 0 0 307 0 0 298 0 0 279 0 0 250 0 0 291 0 0 317 0 0 276 0 0 296 0 0 292 0 0 339 0 0 268 0 0 269 0 0 294 0 0 317 0 0 335 0 0 302 0 0 275 0 0 269 0 0 299 0 0 299 0 0 297 0 0 295 0 0 323 0 0 321 0 0 318 0 0 317 0 0 279 0 0 315 0 0 301 0 0 330 0 0 343 0 0 299 0 0 349 0 0 335 0 0 306 0 0 300 0 0 349 0 0 335 0 0 318 0 0 308 0 0 322 0 0 338 0 0 308 0 0 291 0 0 329 0 0 307 0 0 325 0 0 323 0 0 338 0 0 325 0 0 309 0 0 313 0 0 303 0 0 317 0 0 330 0 0 331 0 0 325 0 0 347 0 0 320 0 0 297 0 0 320 0 0 324 0 0 302 0 0 310 0 0 316 0 0 337 0 0 329 0 0 379 0 0 329 0 0 372 0 0 339 0 0 357 0 0 333 0 0 335 0 0 341 0 0 385 0 0 384 0 0 384 0 0 385 0 0 363 0 0 334 0 0 334 0 0 374 0 0 356 0 0 363 0 0 351 0 0 331 0 0 339 0 0 369 0 0 325 0 0 363 0 0 331 0 0 354 0 0 350 0 0 352 0 0 357 0 0 329 0 0 348 0 0 332 0 0 363 0 0 353 0 0 353 0 0 411 0 0 366 0 0 348 0 0 369 0 0 368 0 0 339 0 0 348 0 0 360 0 0 381 0 0 415 0 0 404 0 0 363 0 0 342 0 0 307 0 0 313 0 0 321 0 0 341 0 0 341 0 0 350 0 0 337 0 0 340 0 0 345 0 0 357 0 0 333 0 0 363 0 0 324 0 0 337 0 0 305 0 0 358 0 0 355 0 0 351 0 0 319 0 0 338 0 0 329 0 0 315 0 0 340 0 0 357 0 0 332 0 0 323 0 0 390 0 0 323 0 0 353 0 0 377 0 0 323 0 0 375 0 0 356 0 0 347 0 0 311 0 0 326 0 0 338 0 0 357 0 0 336 0 0 336 0 0 336 0 0 289 0 0 262 0 0 307 0 0 288 0 0 315 0 0 338 0 0 295 0 0 307 0 0 289 0 0 286 0 0 251 0 0 255 0 0 282 0 0 288 0 0 311 0 0 267 0 0 295 0 0 305 0 0 295 0 0 287 0 0 253 0 0 277 0 0 248 0 0 286 0 0 283 0 0 283 0 0 285 0 0 292 0 0 302 0 0 257 0 0 272 0 0 282 0 0 292 0 0 324 0 0 260 0 0 291 0 0 263 0 0 256 0 0 291 0 0 314 0 0 285 0 0 316 0 0 279 0 0 276 0 0 317 0 0 332 0 0 309 0 0 313 0 0 340 0 0 311 0 0 257 0 0 274 0 0 317 0 0 292 0 0 295 0 0 310 0 0 245 0 0 266 0 0 290 0 0 296 0 0 320 0 0 304 0 0 302 0 0 273 0 0 247 0 0 265 0 0 285 0 0 255 0 0 252 0 0 290 0 0 249 0 0 254 0 0 251 0 0 279 0 0 292 0 0 255 0 0 256 0 0 247 0 0 248 0 0 275 0 0 299 0 0 267 0 0 277 0 0 250 0 0 257 0 0 257 0 0 266 0 0 305 0 0 239 0 0 273 0 0 312 0 0 238 0 0 250 0 0 290 0 0 319 0 0 293 0 0 307 0 0 286 0 0 312 0 0 254 0 0 263 0 0 256 0 0 287 0 0 279 0 0 282 0 0 258 0 0 242 0 0 275 0 0 249 0 0 282 0 0 245 0 0 250 0 0 243 0 0 252 0 0 260 0 0 272 0 0 216 0 0 245 0 0 267 0 0 252 0 0 249 0 0 257 0 0 274 0 0 273 0 0 271 0 0 296 0 0 240 0 0 255 0 0 239 0 0 234 0 0 268 0 0 289 0 0 284 0 0 258 0 0 234 0 0 235 0 0 282 0 1 227 0 0 311 0 0 281 0 0 259 0 0 262 0 0 274 0 0 241 0 0 253 0 0 279 0 0 265 1 0 256 0 0 225 0 0 241 0 0 262 0 0 230 0 0 250 0 0 283 0 0 256 0 0 252 0 0 286 0 0 327 0 0 284 0 0 331 0 0 288 0 0 266 0 0 283 0 0 303 0 0 286 0 0 263 0 0 283 0 0 344 0 0 265 0 0 266 0 0 258 0 0 283 0 0 279 0 0 278 0 0 256 0 0 262 0 0 259 0 0 278 0 0 287 0 0 314 0 0 300 0 0 285 0 0 304 0 0 286 0 0 312 0 0 296 0 0 279 0 0 292 0 0 279 0 0 286 0 0 231 0 0 271 0 0 260 0 0 265 0 0 269 0 0 291 0 0 282 0 0 239 0 0 271 0 0 295 0 0 282 0 0 294 0 0 281 0 0 279 0 0 246 0 0 255 0 0 277 0 0 286 0 0 271 0 0 267 0 0 264 0 0 252 0 0 327 0 0 323 0 0 278 0 0 304 0 0 285 0 0 322 0 0 271 0 0 283 0 0 281 0 0 307 0 0 303 0 0 289 0 0 300 0 0 277 0 0 308 0 0 309 0 1 298 0 0 277 0 0 294 0 0 262 0 0 265 0 0 334 0 0 280 0 0 318 0 0 318 0 0 291 1 0 300 0 0 304 0 0 296 0 0 318 0 0 315 0 0 307 0 0 334 0 0 313 0 0 306 0 0 313 0 0 325 0 0 313 0 0 314 0 0 300 0 0 322 0 0 303 0 0 288 0 0 339 0 0 333 0 0 317 0 0 344 0 0 297 0 0 296 0 0 337 0 0 334 0 0 339 0 0 298 0 0 315 0 0 299 0 0 278 0 0 326 0 0 332 0 0 293 0 0 285 0 0 310 0 0 300 0 0 290 0 0 295 0 0 313 0 0 303 0 0 309 0 0 318 0 0 296 0 0 256 0 0 301 0 0 295 0 0 328 0 0 306 0 0 333 0 0 343 0 0 284 0 0 311 0 0 322 0 0 306 0 0 337 0 0 334 0 0 305 0 0 310 0 0 286 0 0 299 0 0 327 0 0 346 0 0 299 0 0 329 0 0 281 0 0 309 0 0 318 0 0 348 0 0 312 0 0 306 0 0 304 0 0 299 0 0 309 0 0 328 0 0 312 0 0 315 0 0 325 0 0 273 0 0 269 0 0 266 0 0 290 0 0 305 0 0 300 0 0 322 0 0 308 0 0 279 0 0 320 0 0 314 0 0 307 0 0 331 0 0 311 0 0 323 0 0 292 0 0 325 0 0 297 0 0 302 0 0 303 0 0 345 0 0 296 0 0 284 0 0 293 0 0 325 0 0 326 0 0 271 0 0 271 0 0 283 0 0 279 0 0 337 0 0 301 0 0 326 0 0 307 0 0 320 0 0 301 0 0 283 0 0 313 0 0 278 0 0 248 0 0 310 0 0 310 0 0 280 0 0 289 0 0 274 0 0 280 0 0 248 0 0 275 0 0 306 0 0 272 0 0 265 0 0 285 0 0 275 0 0 303 0 0 339 0 0 286 0 0 285 0 0 244 0 0 266 0 0 277 0 0 279 0 0 246 0 0 290 0 0 284 0 0 250 0 0 271 0 0 283 0 0 302 0 0 300 0 0 264 0 0 266 0 0 250 0 0 290 0 0 269 0 0 269 0 0 296 0 0 306 0 0 290 0 0 280 0 0 275 0 0 320 0 0 285 0 0 268 0 0 284 0 0 259 0 0 257 0 0 267 0 0 283 0 0 296 0 0 281 0 0 276 0 0 276 0 0 278 0 0 260 0 0 293 0 1 299 0 0 277 0 0 277 0 0 262 0 0 280 0 0 298 0 0 313 0 0 277 0 0 255 0 0 256 1 0 267 0 0 232 0 0 251 0 0 269 0 0 277 0 0 246 0 0 290 0 0 278 0 0 242 0 0 251 0 0 314 0 0 272 0 0 255 0 0 263 0 0 271 0 0 239 0 0 223 0 0 273 0 0 262 0 0 268 0 0 315 0 0 260 0 0 266 0 0 256 0 0 282 0 0 259 0 0 298 0 0 277 0 0 251 0 0 230 0 0 236 0 0 315 0 0 239 0 0 320 0 0 290 0 0 319 0 0 320 0 0 274 0 0 295 0 0 284 0 0 293 0 0 262 0 0 293 0 0 298 0 0 301 0 0 283 0 0 263 0 0 268 0 0 273 0 0 261 0 0 256 0 0 239 0 0 255 0 0 280 0 0 289 0 0 235 0 0 273 0 0 244 0 0 241 0 0 248 0 0 266 0 0 259 0 0 263 0 0 211 0 0 219 0 0 248 0 0 300 0 0 251 0 0 240 0 0 248 0 0 269 0 0 227 0 0 264 0 0 277 0 0 273 0 0 287 0 0 268 0 0 245 0 0 267 0 0 276 0 0 279 0 0 262 0 0 278 0 0 286 0 0 276 0 0 236 0 0 254 0 0 263 0 0 282 0 0 255 0 0 253 0 0 265 0 0 265 0 0 224 0 0 293 0 0 265 0 0 309 0 0 306 0 0 260 0 0 255 0 0 235 0 0 254 0 0 242 0 0 246 0 0 288 0 0 262 0 0 265 0 0 256 0 0 264 0 0 282 0 0 271 0 0 275 0 0 284 0 0 229 0 0 250 0 0 309 0 0 273 0 0 297 0 0 261 0 0 264 0 0 228 0 0 294 0 0 257 0 0 269 0 0 268 0 0 267 0 0 314 0 0 261 0 0 275 0 0 283 0 0 290 0 0 291 0 0 264 0 0 282 0 0 282 0 0 243 0 0 307 0 0 286 0 0 275 0 0 300 0 0 285 0 0 246 0 0 275 0 0 292 0 0 281 0 0 267 0 0 276 0 0 275 0 0 256 0 0 295 0 0 296 0 0 304 0 0 276 0 0 279 0 0 274 0 0 252 0 0 267 0 0 277 0 0 290 0 0 315 0 0 305 0 0 293 0 0 277 0 0 316 0 0 302 0 0 280 0 0 315 0 0 307 0 0 299 0 0 286 0 0 266 0 0 295 0 0 323 0 0 302 0 0 312 0 0 299 0 0 291 0 0 300 0 0 313 0 0 358 0 0 332 0 0 354 0 0 332 0 0 296 0 0 303 0 0 340 0 0 329 0 0 368 0 0 374 0 0 310 0 0 302 0 0 321 0 0 337 0 0 316 0 0 316 0 0 349 0 0 315 0 0 325 0 0 341 0 0 341 0 0 344 0 0
Names of X columns:
STERFGEVALLEN VRIJDAG_13de DINSDAG_3de
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test mywarning <- '' par1 <- as.numeric(par1) if(is.na(par1)) { par1 <- 1 mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.' } if (par4=='') par4 <- 0 par4 <- as.numeric(par4) if (par5=='') par5 <- 0 par5 <- as.numeric(par5) x <- na.omit(t(y)) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) for (i in 1:n-1) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if(par4 > 0) { x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep=''))) for (i in 1:(n-par4)) { for (j in 1:par4) { x2[i,j] <- x[i+par4-j,par1] } } x <- cbind(x[(par4+1):n,], x2) n <- n - par4 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } k <- length(x[1+par4,]) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x k <- length(x[1+par4,]) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, mywarning) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+')) a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' ')) a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+')) a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' ')) a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' ')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, signif(mysum$fstatistic[2],6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, signif(mysum$fstatistic[3],6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' ')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') if(n < 200) { a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' ')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' ')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant1,6)) a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' ')) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant5,6)) a<-table.element(a,signif(numsignificant5/numgqtests,6)) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant10,6)) a<-table.element(a,signif(numsignificant10/numgqtests,6)) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') } }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation