Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
790 766 1040 949 758 1023 921 775 907 835 871 836 789 811 996 778 603 990 735 800 706 766 870 647 726 784 884 696 893 674 703 799 793 799 1022 758 1021 944 915 864 1022 891 1087 822 890 1092 967 833 1104 1063 1103 1039 1185 1047 1155 878 879 1133 920 943 938 900 781 1040 792 653 866 679 799 760 699 762
# simulations
blockwidth of bootstrap
Significant digits
Quantiles
P1 P5 Q1 Q3 P95 P99
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
bandwidth
Chart options
R Code
par1 <- as.numeric(par1) par2 <- as.numeric(par2) par3 <- as.numeric(par3) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 if (par2 < 3) par2 = 3 if (par2 > length(x)) par2 = length(x) library(modeest) library(lattice) library(boot) boot.stat <- function(s) { s.mean <- mean(s) s.median <- median(s) s.midrange <- (max(s) + min(s)) / 2 s.mode <- mlv(s,method='mfv')$M s.kernelmode <- mlv(s, method='kernel')$M c(s.mean, s.median, s.midrange, s.mode, s.kernelmode) } (r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed')) bitmap(file='plot1.png') plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean') grid() dev.off() bitmap(file='plot2.png') plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median') grid() dev.off() bitmap(file='plot3.png') plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange') grid() dev.off() bitmap(file='plot7a.png') plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode') grid() dev.off() bitmap(file='plot8a.png') plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density') grid() dev.off() bitmap(file='plot4.png') densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean') dev.off() bitmap(file='plot5.png') densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median') dev.off() bitmap(file='plot6.png') densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange') dev.off() z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5]) ) colnames(z) <- list('mean','median','midrange','mode','mode.k.dens') bitmap(file='plot7.png') boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() if (par4 == 'P1 P5 Q1 Q3 P95 P99') { myq.1 <- 0.01 myq.2 <- 0.05 myq.3 <- 0.95 myq.4 <- 0.99 myl.1 <- 'P1' myl.2 <- 'P5' myl.3 <- 'P95' myl.4 <- 'P99' } if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') { myq.1 <- 0.005 myq.2 <- 0.025 myq.3 <- 0.975 myq.4 <- 0.995 myl.1 <- 'P0.5' myl.2 <- 'P2.5' myl.3 <- 'P97.5' myl.4 <- 'P99.5' } if (par4 == 'P10 P20 Q1 Q3 P80 P90') { myq.1 <- 0.10 myq.2 <- 0.20 myq.3 <- 0.80 myq.4 <- 0.90 myl.1 <- 'P10' myl.2 <- 'P20' myl.3 <- 'P80' myl.4 <- 'P90' } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Blocked Bootstrap',10,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,myl.1,header=TRUE) a<-table.element(a,myl.2,header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,myl.3,header=TRUE) a<-table.element(a,myl.4,header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] p01 <- quantile(r$t[,1],myq.1)[[1]] p05 <- quantile(r$t[,1],myq.2)[[1]] p95 <- quantile(r$t[,1],myq.3)[[1]] p99 <- quantile(r$t[,1],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[1],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element( a,signif( sqrt(var(r$t[,1])),par3 ) ) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] p01 <- quantile(r$t[,2],myq.1)[[1]] p05 <- quantile(r$t[,2],myq.2)[[1]] p95 <- quantile(r$t[,2],myq.3)[[1]] p99 <- quantile(r$t[,2],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[2],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,2])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'midrange',header=TRUE) q1 <- quantile(r$t[,3],0.25)[[1]] q3 <- quantile(r$t[,3],0.75)[[1]] p01 <- quantile(r$t[,3],myq.1)[[1]] p05 <- quantile(r$t[,3],myq.2)[[1]] p95 <- quantile(r$t[,3],myq.3)[[1]] p99 <- quantile(r$t[,3],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[3],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,3])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode',header=TRUE) q1 <- quantile(r$t[,4],0.25)[[1]] q3 <- quantile(r$t[,4],0.75)[[1]] p01 <- quantile(r$t[,4],myq.1)[[1]] p05 <- quantile(r$t[,4],myq.2)[[1]] p95 <- quantile(r$t[,4],myq.3)[[1]] p99 <- quantile(r$t[,4],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[4],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,4])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode k.dens',header=TRUE) q1 <- quantile(r$t[,5],0.25)[[1]] q3 <- quantile(r$t[,5],0.75)[[1]] p01 <- quantile(r$t[,5],myq.1)[[1]] p05 <- quantile(r$t[,5],myq.2)[[1]] p95 <- quantile(r$t[,5],myq.3)[[1]] p99 <- quantile(r$t[,5],myq.4)[[1]] a<-table.element(a,signif(p01,par3)) a<-table.element(a,signif(p05,par3)) a<-table.element(a,signif(q1,par3)) a<-table.element(a,signif(r$t0[5],par3)) a<-table.element(a,signif(q3,par3)) a<-table.element(a,signif(p95,par3)) a<-table.element(a,signif(p99,par3)) a<-table.element(a,signif(sqrt(var(r$t[,5])),par3)) a<-table.element(a,signif(q3-q1,par3)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation