Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
21 4 22 4 22 5 18 4 23 4 12 9 20 8 22 11 21 4 19 4 22 6 15 4 20 8 19 4 18 4 15 11 20 4 21 4 21 6 15 6 16 4 23 8 21 5 18 4 25 9 9 4 30 7 20 10 23 4 16 4 16 7 19 12 25 7 18 5 23 8 21 5 10 4 14 9 22 7 26 4 23 4 23 4 24 4 24 4 18 7 23 4 15 7 19 4 16 4 25 4 23 4 17 8 19 4 21 4 18 4 27 4 21 7 13 12 8 4 29 4 28 4 23 5 21 15 19 5 19 10 20 9 18 8 19 4 17 5 19 4 25 9 19 4 22 10 23 4 14 4 16 7 24 5 20 4 12 4 24 4 22 4 12 4 22 4 20 6 10 10 23 7 17 4 22 4 24 7 18 4 21 8 20 11 20 6 22 14 19 5 20 4 26 8 23 9 24 4 21 4 21 5 19 4 8 5 17 4 20 4 11 7 8 10 15 4 18 5 18 4 19 4 19 4 23 6 22 4 21 8 25 5 30 4 17 17 27 4 23 4 23 8 18 4 18 7 23 4 19 4 15 5 20 7 16 4 24 4 25 7 25 11 19 7 19 4 16 4 19 4 19 4 23 4 21 4 22 6 19 8 20 23 20 4 3 8 23 6 23 4 20 7 15 4 16 4 7 4 24 10 17 6 24 5 24 5 19 4 25 4 20 5 28 5 23 5 27 5 18 4 28 6 21 4 19 4 23 4 27 9 22 18 28 6 25 5 21 4 22 11 28 4 20 10 29 6 25 8 25 8 20 6 20 8 16 4 20 4 20 9 23 9 18 5 25 4 18 4 19 15 25 10 25 9 25 7 24 9 19 6 26 4 10 7 17 4 13 7 17 4 30 15 25 4 4 9 16 4 21 4 23 28 22 4 17 4 20 4 20 5 22 4 16 4 23 12 0 4 18 6 25 6 23 5 12 4 18 4 24 4 11 10 18 7 23 4 24 7 29 4 18 4 15 12 29 5 16 8 19 6 22 17 16 4 23 5 23 4 19 5 4 5 20 6 24 4 20 4 4 4 24 6 22 8 16 10 3 4 15 5 24 4 17 4 20 4 27 16 26 7 23 4 17 4 20 14 22 5 19 5 24 5 19 5 23 7 15 19 27 16 26 4 22 4 22 7 18 9 15 5 22 14 27 4 10 16 20 10 17 5 23 6 19 4 13 4 27 4 23 5 16 4 25 4 2 5 26 4 20 4 23 5 22 8 24 15
Names of X columns:
NUMERACYTOT AMS.A
Column number of first sample
Column number of second sample
Confidence
Alternative
two.sided
less
greater
Are observations paired?
unpaired
paired
Null Hypothesis
Chart options
Title:
R Code
par1 <- as.numeric(par1) #column number of first sample par2 <- as.numeric(par2) #column number of second sample par3 <- as.numeric(par3) #confidence (= 1 - alpha) if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE par6 <- as.numeric(par6) #H0 z <- t(y) if (par1 == par2) stop('Please, select two different column numbers') if (par1 < 1) stop('Please, select a column number greater than zero for the first sample') if (par2 < 1) stop('Please, select a column number greater than zero for the second sample') if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller') if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller') if (par3 <= 0) stop('The confidence level should be larger than zero') if (par3 >= 1) stop('The confidence level should be smaller than zero') (r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3)) (v.t <- var.test(z[,par1],z[,par2],conf.level=par3)) (r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3)) (w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3)) (ks.t <- ks.test(z[,par1],z[,par2],alternative=par4)) m1 <- mean(z[,par1],na.rm=T) m2 <- mean(z[,par2],na.rm=T) mdiff <- m1 - m2 newsam1 <- z[!is.na(z[,par1]),par1] newsam2 <- z[,par2]+mdiff newsam2 <- newsam2[!is.na(newsam2)] (ks1.t <- ks.test(newsam1,newsam2,alternative=par4)) mydf <- data.frame(cbind(z[,par1],z[,par2])) colnames(mydf) <- c('Variable 1','Variable 2') bitmap(file='test1.png') boxplot(mydf, notch=TRUE, ylab='value',main=main) dev.off() bitmap(file='test2.png') qqnorm(z[,par1],main='Normal QQplot - Variable 1') qqline(z[,par1]) dev.off() bitmap(file='test3.png') qqnorm(z[,par2],main='Normal QQplot - Variable 2') qqline(z[,par2]) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) if(!paired){ a<-table.row.start(a) a<-table.element(a,'Mean of Sample 1',header=TRUE) a<-table.element(a,r.t$estimate[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean of Sample 2',header=TRUE) a<-table.element(a,r.t$estimate[[2]]) a<-table.row.end(a) } else { a<-table.row.start(a) a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE) a<-table.element(a,r.t$estimate) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,'t-stat',header=TRUE) a<-table.element(a,r.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,r.t$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,r.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,r.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,r.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(r.t$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'F-test to compare two variances',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'F-stat',header=TRUE) a<-table.element(a,v.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,v.t$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,v.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,v.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,v.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(v.t$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) if(!paired){ a<-table.row.start(a) a<-table.element(a,'Mean of Sample 1',header=TRUE) a<-table.element(a,r.w$estimate[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean of Sample 2',header=TRUE) a<-table.element(a,r.w$estimate[[2]]) a<-table.row.end(a) } else { a<-table.row.start(a) a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE) a<-table.element(a,r.w$estimate) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,'t-stat',header=TRUE) a<-table.element(a,r.w$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,r.w$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,r.w$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,r.w$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,r.w$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(r.w$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) myWlabel <- 'Wilcoxon Signed-Rank Test' if (par5=='unpaired') myWlabel = 'Wilcoxon Rank-Sum Test (Mann–Whitney U test)' a<-table.element(a,paste(myWlabel,' with continuity correction (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'W',header=TRUE) a<-table.element(a,w.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,w.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,w.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,w.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Kolmogorov-Smirnov Test to compare <i>Distributions</i> of two Samples',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'KS Statistic',header=TRUE) a<-table.element(a,ks.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,ks.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Kolmogorov-Smirnov Test to compare <i>Distributional Shape</i> of two Samples',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'KS Statistic',header=TRUE) a<-table.element(a,ks1.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,ks1.t$p.value) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation