Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
2341 2115 2402 2180 2453 2507 2679 2622 2618 2648 2523 2473 2513 2466 2544 2537 2564 2582 2716 2904 2851 2932 2772 2811 2935 2783 3003 2995 3127 2985 3287 3236 3252 3228 2856 3176 3362 3036 3330 3251 3318 3238 3597 3708 3902 3745 3426 3526 3483 3458 3824 3696 3518 3814 3996 4136 4037 3915 3760 3955 4160 4115 4202 4018 4233 4029 4401 4645 4491 4379 4394 4472 4614 4160 4328 4202 4635 4542 4920 4774 4698 4916 4703 4616 4873 4375 4801 4427 4684 4648 5225 5174 5181 5266 4839 5032 5221 4658 5014 4980 4952 4946 5365 5456 5397 5436 4995 5019 5249 4799 5137 4979 4951 5265 5612 5572 5403 5373 5252 5437 5296 5011 5294 5335 5398 5396 5724 5898 5718 5625 5380 5488 5678 5224 5596 5184 5620 5531 5816 6086 6175 6112 5813 5740 5821 5294 5881 5589 5845 5706 6355 6404 6426 6375 5869 5994 6105 5792 6011 5968 6255 6208 6897 6814 6897 6596 6188 6406 6548 5842 6555 6424 6596 6645 7203 7128 7133 6778 6593 6591 6120 5612 6070 5983 6145 6303 6588 6640 6719 6575 6487 6510 6365 5844 5974 5880 6279 6342 6598 6801 6529 6369 6028 6187 6164 5866 6198 5898 6462 6063 6496 6678 6554 6513 6210 5928 6268 5582 5869 5764 6082 6062 6810 6727 6537 6175 6014 6109
Type of Seasonality
multiplicative
additive
multiplicative
Seasonal Period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
par2 <- as.numeric(par2) x <- ts(x,freq=par2) m <- decompose(x,type=par1) m$figure bitmap(file='test1.png') plot(m) dev.off() mylagmax <- length(x)/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend') acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observations',header=TRUE) a<-table.element(a,'Fit',header=TRUE) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Random',header=TRUE) a<-table.row.end(a) for (i in 1:length(m$trend)) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6)) a<-table.element(a,signif(m$trend[i],6)) a<-table.element(a,signif(m$seasonal[i],6)) a<-table.element(a,signif(m$random[i],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation