Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
85.13 85.54 85.47 85.78 86.07 86.05 86.32 86.43 86.41 86.38 86.59 86.68 86.87 87.32 87.13 87.42 87.22 87.17 87.52 87.49 87.53 87.93 88.54 88.96 89.3 90.01 90.52 90.64 91.25 91.59 92.09 91.81 92.03 92.15 91.98 92.11 92.28 92.53 91.97 92.05 91.87 91.49 91.48 91.63 91.46 91.61 91.7 91.87 92.21 92.65 92.83 93.02 93.33 93.35 93.45 93.51 93.8 93.94 94.02 94.26 94.71 95.26 95.54 95.69 96.03 96.4 96.55 96.45 96.65 96.84 97.21 97.31 97.91 98.51 98.54 98.52 98.66 98.53 98.71 98.92 98.96 99.25 99.32 99.41 99.36 99.58 99.77 99.77 100.03 100.2 100.24 100.1 100.03 100.18 100.29 100.41 100.6 100.75 100.79 100.44 100.29 100.34 100.46 100.12 100.06 100.28 100.28 100.4
Sample Range:
(leave blank to include all observations)
From:
To:
Number of time lags
48
Default
5
6
7
8
9
10
11
12
24
36
48
60
Box-Cox transformation parameter (Lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
1
0
1
2
Degree of seasonal differencing (D)
0
0
1
2
Seasonality
12
12
1
2
3
4
6
12
CI type
White Noise
White Noise
MA
Confidence Interval
Use logarithms with this base
(overrules the Box-Cox lambda parameter)
(?)
Chart options
R Code
par8 <- '' par7 <- '0.95' par6 <- 'White Noise' par5 <- '12' par4 <- '0' par3 <- '0' par2 <- '1' par1 <- '48' if (par1 == 'Default') { par1 = 10*log10(length(x)) } else { par1 <- as.numeric(par1) } par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) par5 <- as.numeric(par5) if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma' par7 <- as.numeric(par7) if (par8 != '') par8 <- as.numeric(par8) ox <- x if (par8 == '') { if (par2 == 0) { x <- log(x) } else { x <- (x ^ par2 - 1) / par2 } } else { x <- log(x,base=par8) } if (par3 > 0) x <- diff(x,lag=1,difference=par3) if (par4 > 0) x <- diff(x,lag=par5,difference=par4) bitmap(file='picts.png') op <- par(mfrow=c(2,1)) plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value') if (par8=='') { mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } else { mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } plot(x,type='l', main=mytitle,xlab='time',ylab='value') par(op) dev.off() bitmap(file='pic1.png') racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub) dev.off() bitmap(file='pic2.png') rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub) dev.off() (myacf <- c(racf$acf)) (mypacf <- c(rpacf$acf)) lengthx <- length(x) sqrtn <- sqrt(lengthx) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 2:(par1+1)) { a<-table.row.start(a) a<-table.element(a,i-1,header=TRUE) a<-table.element(a,round(myacf[i],6)) mytstat <- myacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Partial Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 1:par1) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,round(mypacf[i],6)) mytstat <- mypacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation