Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
71.83 71.39 73.71 74.13 74.45 74.95 75.09 75.23 76.11 76.64 76.97 78.23 77.15 76.33 70.19 68.42 66.49 63.41 62.92 65.53 65.26 68.25 74.39 78.71 82.15 86.05 89.46 89.32 88.94 93.35 94.72 96.11 104.06 104.11 103.9 110.75 110.82 107.59 96.03 95.69 90.63 75.87 75.57 78.78 74.93 75.85 75.49 76.87 78.18 79.37 80.59 81.18 81.02 82.75 83.63 85.35 90.52 90.66 90.69 92.56 92.87 93.82 96.32 96.03 96.53 102.96 102.38 102.66 106.83 106.5 106.78 108.49 108.77 110.43 110.84 110.52 110.11 109.42 109.06 108.98 108.36 108.11 108.44 107.76 106.27 101.07 100.79 100.97 99.33 99.35 99.23 98.14 98.17 98.48 99 99.19 99.1 100.13 100.07 95.26 94.72 94.25 89.46 88.38 88.57 93.82 93.94 93.92
Sample Range:
(leave blank to include all observations)
From:
To:
# blockwidth
Chart options
R Code
par1 <- as.numeric(par1) (n <- length(x)) (np <- floor(n / par1)) arr <- array(NA,dim=c(par1,np+1)) darr <- array(NA,dim=c(par1,np+1)) ari <- array(0,dim=par1) dx <- diff(x) j <- 0 for (i in 1:n) { j = j + 1 ari[j] = ari[j] + 1 arr[j,ari[j]] <- x[i] darr[j,ari[j]] <- dx[i] if (j == par1) j = 0 } ari arr darr arr.mean <- array(NA,dim=par1) arr.median <- array(NA,dim=par1) arr.midrange <- array(NA,dim=par1) for (j in 1:par1) { arr.mean[j] <- mean(arr[j,],na.rm=TRUE) arr.median[j] <- median(arr[j,],na.rm=TRUE) arr.midrange[j] <- (quantile(arr[j,],0.75,na.rm=TRUE) + quantile(arr[j,],0.25,na.rm=TRUE)) / 2 } overall.mean <- mean(x) overall.median <- median(x) overall.midrange <- (quantile(x,0.75) + quantile(x,0.25)) / 2 bitmap(file='plot1.png') plot(arr.mean,type='b',ylab='mean',main='Mean Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.mean,0) dev.off() bitmap(file='plot2.png') plot(arr.median,type='b',ylab='median',main='Median Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.median,0) dev.off() bitmap(file='plot3.png') plot(arr.midrange,type='b',ylab='midrange',main='Midrange Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.midrange,0) dev.off() bitmap(file='plot4.png') z <- data.frame(t(arr)) names(z) <- c(1:par1) (boxplot(z,notch=TRUE,col='grey',xlab='Periodic Index',ylab='Value',main='Notched Box Plots - Periodic Subseries')) dev.off() bitmap(file='plot4b.png') z <- data.frame(t(darr)) names(z) <- c(1:par1) (boxplot(z,notch=TRUE,col='grey',xlab='Periodic Index',ylab='Value',main='Notched Box Plots - Differenced Periodic Subseries')) dev.off() bitmap(file='plot5.png') z <- data.frame(arr) names(z) <- c(1:np) (boxplot(z,notch=TRUE,col='grey',xlab='Block Index',ylab='Value',main='Notched Box Plots - Sequential Blocks')) dev.off() bitmap(file='plot6.png') z <- data.frame(cbind(arr.mean,arr.median,arr.midrange)) names(z) <- list('mean','median','midrange') (boxplot(z,notch=TRUE,col='grey',ylab='Overall Central Tendency',main='Notched Box Plots')) dev.off()
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation