Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
28100 27900 28078 28479 28156 29219 28782 27078 30031 29579 26532 23995 22067 21818 23787 21551 21309 22395 22906 21430 23492 24144 24438 24689 24569 23754 28473 27051 27081 29635 27715 26373 28009 29472 30005 29777 28886 28549 33348 29017 30924 30435 29431 30290 31286 30622 31742 30391 30740 32086 33947 31312 33239 32362 32170 32665 31412 34891 33919 30706 32846 31368 33130 31665 33139 32201 32230 30287 31918 33853 32232 31484 31902 30260 32823 32018 32100 31952 33274 29491 32751 33643 31226 30976
Sample Range:
(leave blank to include all observations)
From:
To:
Number of bins
(leave empty to use default)
(?)
Colour
grey
grey
white
blue
red
black
brown
yellow
Bins are closed on right side
FALSE
FALSE
TRUE
Scale of data
Unknown
Unknown
Interval/Ratio
3-point Likert
4-point Likert
5-point Likert
6-point Likert
7-point Likert
8-point Likert
9-point Likert
10-point Likert
11-point Likert
Chart options
Title:
Label x-axis:
R Code
par1 <- as.numeric(par1) if (par3 == 'TRUE') par3 <- TRUE if (par3 == 'FALSE') par3 <- FALSE if (par4 == 'Unknown') par1 <- as.numeric(par1) if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1) if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5) if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5) if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5) if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5) if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5) if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5) if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5) if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5) bitmap(file='test1.png') if(is.numeric(x[1])) { if (is.na(par1)) { myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3) } else { if (par1 < 0) par1 <- 3 if (par1 > 50) par1 <- 50 myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3) } } else { barplot(mytab <- sort(table(x),T),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency') } dev.off() if(is.numeric(x[1])) { myhist n <- length(x) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/histogram.htm','Frequency Table (Histogram)',''),6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Bins',header=TRUE) a<-table.element(a,'Midpoint',header=TRUE) a<-table.element(a,'Abs. Frequency',header=TRUE) a<-table.element(a,'Rel. Frequency',header=TRUE) a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE) a<-table.element(a,'Density',header=TRUE) a<-table.row.end(a) crf <- 0 if (par3 == FALSE) mybracket <- '[' else mybracket <- ']' mynumrows <- (length(myhist$breaks)-1) for (i in 1:mynumrows) { a<-table.row.start(a) if (i == 1) dum <- paste('[',myhist$breaks[i],sep='') else dum <- paste(mybracket,myhist$breaks[i],sep='') dum <- paste(dum,myhist$breaks[i+1],sep=',') if (i==mynumrows) dum <- paste(dum,']',sep='') else dum <- paste(dum,mybracket,sep='') a<-table.element(a,dum,header=TRUE) a<-table.element(a,myhist$mids[i]) a<-table.element(a,myhist$counts[i]) rf <- myhist$counts[i]/n crf <- crf + rf a<-table.element(a,round(rf,6)) a<-table.element(a,round(crf,6)) a<-table.element(a,round(myhist$density[i],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') } else { mytab reltab <- mytab / sum(mytab) n <- length(mytab) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Category',header=TRUE) a<-table.element(a,'Abs. Frequency',header=TRUE) a<-table.element(a,'Rel. Frequency',header=TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,labels(mytab)$x[i],header=TRUE) a<-table.element(a,mytab[i]) a<-table.element(a,round(reltab[i],4)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation