Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
149 0.5 0 0.67 0.67 0.5 1 0 1 2011 139 1 0.5 0.33 0.83 0.5 0.89 1 1 2011 148 1 0 0.67 1 0.4 0.89 0 1 2011 158 0 0 0 0.83 0.5 0.89 1 1 2011 128 1 1 0 0.67 0.7 0.89 1 1 2011 224 0.5 0.5 0 0 0.3 0.78 1 1 2011 159 0 0.5 0.67 0.83 0.4 0.89 0 1 2011 105 1 1 0.67 0.5 0.4 1 1 1 2011 159 0 0.5 0 0.83 0.7 0.89 1 1 2011 167 0.5 0.5 0.67 0.33 0.6 0.78 1 1 2011 165 0.5 0 1 0.5 0.6 1 1 1 2011 159 0.5 0.5 0 0.67 0.2 0.78 1 1 2011 119 0.5 0.5 0 1 0.4 0.89 1 1 2011 176 1 0 0.67 0.5 0.4 0.89 0 1 2011 54 0 0 0.33 0.67 0.5 0.89 0 1 2011 91 0.5 0 0.67 0.17 0.3 0.89 0 0 2011 163 0.5 0.5 0.33 0.83 0.4 0.89 1 1 2011 124 1 0.5 0.33 0.67 0.7 0.67 0 1 2011 137 1 0 0.33 0.67 0.5 1 1 0 2011 121 1 0 0 0.67 0.2 0.78 0 1 2011 153 0.5 0 0.67 0.5 0.3 0.78 1 1 2011 148 1 0 0.33 1 0.6 0.89 1 1 2011 221 1 0 0.33 0.83 0.6 0.78 0 1 2011 188 1 0 0.33 0.83 0.2 0.89 1 1 2011 149 0 1 0.67 1 0.7 0.89 1 1 2011 244 0 0 0 0.67 0.2 0.33 1 1 2011 148 1 1 0.33 1 1 1 1 0 2011 92 0.5 0 0.67 0.83 0.4 0.89 0 0 2011 150 1 0 1 1 0.4 0.89 1 1 2011 153 0.5 0 0.67 0.83 0.2 0.67 0 1 2011 94 1 0 0.33 0.67 0.4 0.56 0 1 2011 156 1 0.5 0 0.67 0.4 0.89 0 1 2011 132 0.5 0.5 0.67 1 0.7 0.89 1 1 2011 161 0.5 0 0.67 0.67 0.2 1 1 1 2011 105 0.5 0 1 1 0.6 0.78 1 1 2011 97 0.5 0.5 1 1 0.3 0.78 1 1 2011 151 0 0 0.33 0.5 0.3 0.33 0 1 2011 131 0 0.5 0 0.67 0.2 0.78 1 0 2011 166 0.5 0.5 0.67 0.83 0.5 0.89 1 1 2011 157 1 0.5 0.67 1 0.7 0.89 0 1 2011 111 0.5 0.5 0.67 1 0.6 0.78 1 1 2011 145 1 0.5 0.67 1 0.4 0.89 1 1 2011 162 1 0.5 0.33 1 0.6 0.89 1 1 2011 163 1 0 1 1 0.4 1 1 1 2011 59 1 0 0.67 0.83 0.3 0.67 1 0 2011 187 0.5 0.5 0.67 0.83 0.5 1 0 1 2011 109 1 0 0 0.5 0.2 0.89 1 1 2011 90 1 0.5 0 0.83 0.3 0.89 1 0 2011 105 1 0 0 0.17 0.5 0.89 0 1 2011 83 1 0.5 1 0.83 0.7 0.78 1 0 2011 116 0.5 1 0.67 1 0.4 0.89 1 0 2011 42 0.5 0 0 1 0.3 0.78 1 0 2011 148 1 1 0.67 0.67 0.2 0.78 1 1 2011 155 0.5 0 0 1 0.5 1 1 0 2011 125 0 0.5 0 1 0.4 0.78 1 1 2011 116 1 1 0.67 1 0.6 1 1 1 2011 128 1 0 1 0.83 0.4 0.78 0 0 2011 138 0.5 0 0 0.33 0.4 0.67 1 1 2011 49 0 0 0.33 0.33 0.2 0.33 0 0 2011 96 1 0.5 0.67 1 0.9 1 1 0 2011 164 0.5 1 0.67 1 0.8 1 1 1 2011 162 1 0.5 0 0.83 0.8 0.78 0 1 2011 99 1 0.5 1 1 0.3 0.67 0 1 2011 202 0.5 0 0.67 0.83 0.2 1 1 1 2011 186 1 0.5 0 0.67 0.4 0.89 0 1 2011 66 1 0 1 0.83 0.2 0.89 1 0 2011 183 1 0.5 0.67 0.67 0.2 0.78 0 1 2011 214 1 0 0.67 0.83 0.1 1 1 1 2011 188 0 0.5 1 0.67 0.4 0.56 1 1 2011 104 0.5 0.5 0 1 0.5 0.67 0 0 2011 177 1 0.5 0.33 0.83 0.8 0.89 0 1 2011 126 0.5 0 0.67 0.67 0.4 0.89 0 1 2011 76 0.5 0.5 0.33 0.83 0.6 0.89 0 0 2011 99 1 0.5 0.67 0.83 0.5 0.89 1 0 2011 139 0 0 0 0.67 0.3 0.78 0 1 2011 162 0 0.5 0 0.33 0.4 1 0 1 2011 108 0.5 0.5 0.67 0.83 0.6 1 1 0 2011 159 0.5 0 0.33 1 0.4 0.89 0 1 2011 74 0 0 0 0.83 0.3 0.44 0 0 2011 110 1 1 0 0.83 0.8 0.78 1 1 2011 96 1 1 0.33 0.5 0.6 0.89 0 0 2011 116 0 0 0 0.5 0.3 0.67 0 0 2011 87 1 0.5 0.67 0.83 0.5 0.78 0 0 2011 97 1 0 0.33 1 0.4 0.78 1 0 2011 127 0 0 0.67 0.33 0.3 0.33 0 0 2011 106 0.5 0 0.33 1 0.7 0.89 1 0 2011 80 0.5 0.5 0.33 0.67 0.2 0.89 1 0 2011 74 1 0 1 0.83 0.4 0.89 0 0 2011 91 0.5 0.5 0.67 1 0.6 0.89 0 0 2011 133 1 0 0 0.83 0.6 0.56 0 0 2011 74 0.5 0.5 0.67 0.83 0.6 0.67 1 0 2011 114 1 0.5 0.33 1 0.4 0.67 1 0 2011 140 1 0 0 0.83 0.6 0.78 1 0 2011 95 1 0.5 0.33 1 0.5 0.78 0 0 2011 98 1 0 0 0.83 0.5 0.78 1 0 2011 121 1 0 0 0.67 0.6 0.89 0 0 2011 126 1 0.5 0.33 0.83 0.8 1 1 0 2011 98 0.5 1 0.67 0.83 0.5 0.89 1 0 2011 95 1 0.5 0.67 0.83 0.6 0.89 1 0 2011 110 1 0.5 0.67 0.83 0.4 0.78 1 0 2011 70 1 0.5 0.67 0.67 0.3 1 1 0 2011 102 0.5 0 1 0.83 0.3 0.78 0 0 2011 86 0 0 0 0 0.2 0.67 1 0 2011 130 0.5 0 0 0.83 0.4 0.78 1 0 2011 96 0.5 0 0 1 0.5 0.89 1 0 2011 102 0 0.5 0 0.17 0.3 0.67 0 0 2011 100 0 0.5 0 0.17 0.4 0.22 0 0 2011 94 0 0 1 0.5 0.5 0.44 0 0 2011 52 1 0 0.67 0.5 0.3 0.89 0 0 2011 98 0.5 0 0 1 0.5 0.67 0 0 2011 118 0.5 0 0.67 0.67 0.4 0.89 0 0 2011 99 1 0 0.67 0.83 0.4 0.67 1 0 2011 48 1 1 0 1 0.6 0.78 1 1 2012 50 1 1 0.67 1 0.3 0.78 1 1 2012 150 0.5 1 0.33 1 0.4 0.78 1 1 2012 154 1 1 1 1 0.3 1 1 1 2012 109 1 1 1 1 1 0.78 0 0 2012 68 0.5 0 0 1 0.4 0.67 1 0 2012 194 1 0.5 1 0.83 0.8 0.89 1 1 2012 158 1 1 0.67 1 0.3 0.89 0 1 2012 159 1 0 0.67 0.83 0.5 1 1 1 2012 67 0.5 0 0 1 0.4 0.78 0 1 2012 147 1 0 0.67 0.83 0.3 0.67 0 1 2012 39 1 0 1 0.83 0.5 0.89 1 1 2012 100 1 0 0.67 1 0.3 0.67 1 1 2012 111 1 0 0 0.67 0.3 0.67 1 1 2012 138 1 0 0 0.83 0.4 1 1 1 2012 101 0.5 0 0 1 0.3 0.67 1 1 2012 131 0.5 0.5 0.33 1 0.6 1 1 0 2012 101 1 1 0.67 0.83 0.6 0.89 1 1 2012 114 1 1 1 1 0.4 0.89 1 1 2012 165 0 0 0 1 0.4 1 0 1 2012 114 0.5 0 0.67 1 0.4 0.67 1 1 2012 111 1 0.5 0.67 0.67 0.3 0.44 1 1 2012 75 0 1 0.33 1 0.2 0.89 1 1 2012 82 1 0 0.67 0.83 0.5 0.56 1 1 2012 121 1 1 0.67 1 0.4 0.78 1 1 2012 32 0 0 0.67 1 0.4 1 1 1 2012 150 1 0 0.67 0.83 0.4 1 0 1 2012 117 0.5 0.5 0.67 0.67 0.3 0.89 1 1 2012 71 0.5 1 0.67 0.83 0.4 0.67 1 0 2012 165 1 0.5 0.33 1 0.2 0.89 1 1 2012 154 0 0 0 0 0 0.33 1 1 2012 126 1 0.5 0.67 1 0.4 0.89 1 1 2012 149 1 1 0 1 0.6 0.78 0 1 2012 145 0.5 0 0.67 0.67 0.4 1 0 1 2012 120 0.5 0 0 1 0.4 0.44 1 1 2012 109 0 0.5 0 0.83 0.4 0.67 0 1 2012 132 0 0.5 0 0.17 0.2 0.33 0 1 2012 172 1 1 1 0.83 0.4 0.89 1 1 2012 169 0.5 0 0 0.83 0.3 0.89 0 1 2012 114 0 1 0.67 0.83 0.6 1 1 1 2012 156 1 0 1 0.83 0.6 0.89 1 1 2012 172 1 0 0 0.83 0.4 0.89 0 1 2012 68 0.5 1 0.67 1 0.5 1 1 0 2012 89 1 0.5 0 0.83 0.4 0.89 1 0 2012 167 1 1 1 1 0.6 1 1 1 2012 113 1 0.5 0.67 0.83 0.6 0.78 0 1 2012 115 1 0.5 0.67 1 0.9 0.78 0 0 2012 78 0 0.5 0.67 0.83 0.4 0.67 0 0 2012 118 1 0.5 1 1 0.8 0.89 0 0 2012 87 1 0 1 0.83 0.5 0.67 1 0 2012 173 0 0 1 0.83 0.4 0.78 0 1 2012 2 0.5 1 0.67 1 0.4 0.89 1 1 2012 162 0.5 1 1 1 0.7 0.89 0 0 2012 49 1 1 0.33 1 0.4 0.78 1 0 2012 122 1 0.5 0.67 1 0.8 1 0 0 2012 96 0.5 1 1 1 0.4 1 1 0 2012 100 0.5 0 0.67 1 0.3 1 0 0 2012 82 1 0.5 0.67 1 0.5 0.67 0 0 2012 100 1 1 0.67 1 0.8 0.89 1 0 2012 115 0.5 0 0.33 0.83 0.4 1 0 0 2012 141 0 0.5 1 1 1 1 1 0 2012 165 1 1 0.67 1 0.5 0.89 1 1 2012 165 1 1 0.67 1 0.5 0.89 1 1 2012 110 1 0 0.33 1 0.3 0.89 1 0 2012 118 1 0.5 0.33 0.83 0.3 0.89 1 1 2012 158 1 0 0 0.5 0.3 0.89 0 1 2012 146 0.5 0.5 0.33 0.67 0.4 1 1 0 2012 49 1 0 0.33 1 0.5 0.67 0 1 2012 90 1 0.5 0.67 0.67 0.5 1 0 0 2012 121 0 0 0 1 0.4 0.89 0 0 2012 155 0 0.5 1 1 0.7 0.89 1 1 2012 104 0.5 0 0.33 0.5 0.5 0.89 0 0 2012 147 0 1 0.33 0.67 0.4 0.89 1 0 2012 110 1 0 1 0.67 0.7 1 0 0 2012 108 1 0 1 0.67 0.7 1 0 0 2012 113 1 0 1 0.67 0.7 1 0 0 2012 115 1 0 1 0.67 0.7 0.89 0 0 2012 61 0 0 0 0.67 0.7 0.89 1 0 2012 60 1 0.5 0.67 1 0.7 0.89 1 0 2012 109 0 0.5 0.33 0.67 0.1 0.33 1 0 2012 68 1 0.5 0.67 0.67 0.2 0.67 1 0 2012 111 1 0 0.33 0.33 0.3 0.56 0 0 2012 77 0.5 0 0.33 0.83 0.6 0.44 0 0 2012 73 1 1 1 1 0.8 1 1 0 2012 151 0.5 0.5 0.33 1 0.8 0.89 0 1 2012 89 0 0 0 0.17 0 0.33 0 0 2012 78 1 0 0.33 0.67 0.3 0.67 0 0 2012 110 1 0.5 0.33 0.83 0.6 0.67 0 0 2012 220 1 0 0.67 0.83 0.5 1 1 1 2012 65 0.5 0 0.33 1 0.7 0.78 1 0 2012 141 1 0.5 0 0.83 0.3 0.67 0 1 2012 117 0 0 0.67 1 0.3 1 0 0 2012 122 0.5 0 0.67 1 0.4 0.78 1 1 2012 63 1 0 1 0.83 0.4 0.89 0 0 2012 44 1 0 0 0.83 0.1 0.89 1 1 2012 52 1 0 0.67 1 0.5 0.89 1 0 2012 131 0 0 0 0 0 0 0 0 2012 101 0 0.5 0.33 1 0.4 0.67 1 0 2012 42 0.5 1 0.67 0.83 0.6 1 1 0 2012 152 1 0.5 0.33 1 0.4 1 1 1 2012 107 1 0.5 0 0.33 0.1 0.67 0 1 2012 77 1 0 0 0.83 0.3 0.89 0 0 2012 154 1 0 0.67 0.83 0.7 0.89 0 1 2012 103 1 0 0 0.17 0.3 0.56 1 1 2012 96 0 0.5 0.33 0.83 0.5 0.67 1 0 2012 175 1 1 0.67 0.83 0.3 1 1 1 2012 57 1 0.5 0.67 0.67 0.6 1 1 0 2012 112 1 0 1 1 0.9 1 0 0 2012 143 1 0.5 0 0.83 0.4 0.67 0 1 2012 49 0.5 0.5 0 1 0.3 0.44 0 0 2012 110 1 1 0.67 1 0.9 0.89 1 1 2012 131 0 0.5 0 1 0.5 0.44 1 1 2012 167 0.5 0.5 1 1 0.3 0.56 0 1 2012 56 0.5 0 0.67 0.83 0.6 0.89 0 0 2012 137 0.5 0 0.33 1 0.2 0.67 0 1 2012 86 1 0.5 1 0.83 0.4 0.89 1 0 2012 121 0.5 0.5 0.67 0.83 0.5 1 1 1 2012 149 0.5 0 0.67 0.83 0.4 0.78 0 1 2012 168 0 0 0 0 0 0.44 0 1 2012 140 1 0.5 0.33 1 0.2 0.89 0 1 2012 88 1 0.5 0.67 1 0.5 0.89 1 0 2012 168 0.5 0 0.67 1 0.3 0.89 1 1 2012 94 0 0 0 0 0 0.44 1 1 2012 51 1 0 1 0.83 0.5 1 1 1 2012 48 1 0 0.33 0.83 0.6 0.89 0 0 2012 145 0.5 0.5 0 0.83 0.3 0.67 1 1 2012 66 0 0 0 0 0 0.33 1 1 2012 85 0 0.5 0 0.67 0.3 0.78 1 0 2012 109 1 0.5 0.67 1 0.5 0.89 0 1 2012 63 1 0 0 0.67 0.4 0.78 0 0 2012 102 0.5 0 0.67 0.83 0.5 0.78 1 0 2012 162 0.5 1 1 1 0.7 0.89 0 0 2012 86 1 0.5 0.67 1 0.8 0.78 1 0 2012 114 1 0.5 0.33 1 0.6 0.78 1 0 2012 164 0.5 0 0.33 0.83 0.4 0.67 0 1 2012 119 0 0.5 0.33 0.83 0.5 0.89 1 1 2012 126 1 0.5 0 1 0.5 0.89 0 1 2012 132 1 0 0.33 1 0.3 0.78 1 1 2012 142 1 0.5 0 1 0.6 1 1 1 2012 83 0.5 0 0.67 0.67 0.3 1 0 1 2012 94 0.5 0.5 1 0.83 0.6 0.78 1 0 2012 81 1 0 0.33 0.33 0.3 0.78 0 0 2012 166 1 1 0.67 1 0.7 0.89 1 1 2012 110 1 0 1 1 0.7 0.89 0 0 2012 64 1 0.5 1 0.67 0.6 0.67 1 0 2012 93 0 0.5 0.33 1 0.5 1 0 1 2012 104 0.5 0 0.33 0.83 0.5 0.67 0 0 2012 105 1 0 0 0.67 0.4 0.56 1 0 2012 49 1 1 0.33 1 0.4 0.78 1 0 2012 88 1 0 1 1 0.7 1 0 0 2012 95 0 0.5 0 0.17 0.2 0.67 1 0 2012 102 0.5 0 0.67 0.83 0.5 0.78 1 0 2012 99 0 0.5 0.67 0.83 0.4 0.56 0 0 2012 63 1 1 0.67 1 0.2 1 1 0 2012 76 0 0 0.67 0.67 0.5 0.89 0 0 2012 109 1 0 0 0.5 0.4 0.44 0 0 2012 117 1 1 1 0.67 0.7 1 1 0 2012 57 0 1 0.67 0.83 0.6 0.89 1 0 2012 120 0 0 0 0.83 0.4 0.78 0 0 2012 73 1 1 0.67 1 0.5 0.89 1 0 2012 91 0 0 0 0.17 0 0.11 0 0 2012 108 1 0.5 0.67 1 0.7 0.89 0 0 2012 105 1 0 0.67 0.67 0.4 0.89 1 0 2012 117 1 0 1 0.67 0.5 1 0 1 2012 119 0.5 0 0.67 0.83 0.6 0.89 0 0 2012 31 0.5 0.5 0.67 0.5 0.8 1 1 0 2012
Names of X columns:
LFM Estimation Probability_and_Sampling Proportionality_and_Ratio Graphical_Interpretation Algebraic_Reasoning Calculation gender group year
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test mywarning <- '' par1 <- as.numeric(par1) if(is.na(par1)) { par1 <- 1 mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.' } if (par4=='') par4 <- 0 par4 <- as.numeric(par4) if (par5=='') par5 <- 0 par5 <- as.numeric(par5) x <- na.omit(t(y)) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ (n <- n -1) x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep=''))) for (i in 1:n) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if (par3 == 'Seasonal Differences (s=12)'){ (n <- n - 12) x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep=''))) for (i in 1:n) { for (j in 1:k) { x2[i,j] <- x[i+12,j] - x[i,j] } } x <- x2 } if (par3 == 'First and Seasonal Differences (s=12)'){ (n <- n -1) x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep=''))) for (i in 1:n) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 (n <- n - 12) x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep=''))) for (i in 1:n) { for (j in 1:k) { x2[i,j] <- x[i+12,j] - x[i,j] } } x <- x2 } if(par4 > 0) { x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep=''))) for (i in 1:(n-par4)) { for (j in 1:par4) { x2[i,j] <- x[i+par4-j,par1] } } x <- cbind(x[(par4+1):n,], x2) n <- n - par4 } if(par5 > 0) { x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep=''))) for (i in 1:(n-par5*12)) { for (j in 1:par5) { x2[i,j] <- x[i+par5*12-j*12,par1] } } x <- cbind(x[(par5*12+1):n,], x2) n <- n - par5*12 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } (k <- length(x[n,])) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x (k <- length(x[n,])) head(x) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, mywarning) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+')) a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' ')) a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+')) a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' ')) a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' ')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, signif(mysum$fstatistic[2],6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, signif(mysum$fstatistic[3],6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' ')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' ')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') if(n < 200) { a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' ')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' ')) a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' ')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant1,6)) a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' ')) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant5,6)) a<-table.element(a,signif(numsignificant5/numgqtests,6)) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant10,6)) a<-table.element(a,signif(numsignificant10/numgqtests,6)) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') } }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation