Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
4480 4580 5360 4960 5140 5000 5080 5160 5080 5500 5260 5160 4500 4740 5840 5340 5500 5820 5620 5920 5980 6340 6220 5900 5280 5500 6460 5920 6240 6120 5980 6380 5920 6360 5860 5320 4780 4800 5480 5220 5380 5220 5200 5260 5060 5880 5580 5020 6060 5980 6680 6560 6680 6420 6660 7000 6780 7460 6960 6560 6060 6140 7160 6920 7140 7180 7340 7480 7620 8280 7740 7700 7080 7100 8380 7840 7880 8300 8140 8320 8340 8740 8520 8260 7260 7360 8620 8220 8360 8400 8080 8400 8500 8820 8580 7740 7640 7480 8900 7920 8560 8640 8340 9100 8720 9360 8800 8060 7380 7040 8020 7800 8380 8480 8320 8780 8360 9540 8880 7960 7660 7820 8680 8560 8720 8920
Seasonal period
12
1
2
3
4
5
6
7
8
9
10
11
12
Number of Forecasts
12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Algorithm
BFGS
L-BFGS-B
Chart options
R Code
require('stsm') require('stsm.class') require('KFKSDS') par1 <- as.numeric(par1) par2 <- as.numeric(par2) nx <- length(x) x <- ts(x,frequency=par1) m <- StructTS(x,type='BSM') print(m$coef) print(m$fitted) print(m$resid) mylevel <- as.numeric(m$fitted[,'level']) myslope <- as.numeric(m$fitted[,'slope']) myseas <- as.numeric(m$fitted[,'sea']) myresid <- as.numeric(m$resid) myfit <- mylevel+myseas mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS') fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE)) (fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states) m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps)) (ss <- char2numeric(m2)) (pred <- predict(ss, x, n.ahead = par2)) mylagmax <- nx/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level') acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(mylevel,main='Level') spectrum(myseas,main='Seasonal') spectrum(myresid,main='Standardized Residals') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(mylevel,main='Level') cpgram(myseas,main='Seasonal') cpgram(myresid,main='Standardized Residals') par(op) dev.off() bitmap(file='test1.png') plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b') grid() dev.off() bitmap(file='test5.png') op <- par(mfrow = c(2,2)) hist(m$resid,main='Residual Histogram') plot(density(m$resid),main='Residual Kernel Density') qqnorm(m$resid,main='Residual Normal QQ Plot') qqline(m$resid) plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit') par(op) dev.off() bitmap(file='test6.png') par(mfrow = c(3,1), mar = c(3,3,3,3)) plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '') lines(x) polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA) polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA) lines(pred$pred, col = 'blue', lwd = 1.5) mtext(text = 'forecasts of the observed series', side = 3, adj = 0) plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '') lines(x) polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA) polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA) lines(pred$a[,1], col = 'blue', lwd = 1.5) mtext(text = 'forecasts of the level component', side = 3, adj = 0) plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '') lines(fit2.comps[,3]) polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA) polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA) lines(pred$a[,3], col = 'blue', lwd = 1.5) mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Level',header=TRUE) a<-table.element(a,'Slope',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Stand. Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,mylevel[i]) a<-table.element(a,myslope[i]) a<-table.element(a,myseas[i]) a<-table.element(a,myresid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Level',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.row.end(a) for (i in 1:par2) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,pred$pred[i]) a<-table.element(a,pred$a[i,1]) a<-table.element(a,pred$a[i,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation