Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
3647 1885 4791 3178 2849 4716 3085 2799 3573 2721 3355 5667 2856 1944 4188 2949 3567 4137 3494 2489 3244 2669 2529 3377 3366 2073 4133 4213 3710 5123 3141 3084 3804 3203 2757 2243 5229 2857 3395 4882 7140 8945 6866 4205 3217 3079 2263 4187 2665 2073 3540 3686 2384 4500 1679 868 1869 3710 6904 3415 938 3359 3551 2278 3033 2280 2901 4812 4882 7896 5048 3741 4418 3471 5055 7595 8124 2333 3008 2744 2833 2428 4269 3207 5170 7767 4544 3741 2193 3432 5282 6635 4222 7317 4132 5048 4383 3761 4081 6491 5859 7139 7682 8649 6146 7137 9948 15819 8370 13222 16711 19059 8303 20781 9638 13444 6072 13442 14457 17705 16463 19194 20688 14739 12702 15760
Seasonal period
12
1
2
3
4
5
6
7
8
9
10
11
12
Number of Forecasts
12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Algorithm
BFGS
L-BFGS-B
Chart options
R Code
par3 <- 'BFGS' par2 <- '12' par1 <- '12' require('stsm') require('stsm.class') require('KFKSDS') par1 <- as.numeric(par1) par2 <- as.numeric(par2) nx <- length(x) x <- ts(x,frequency=par1) m <- StructTS(x,type='BSM') print(m$coef) print(m$fitted) print(m$resid) mylevel <- as.numeric(m$fitted[,'level']) myslope <- as.numeric(m$fitted[,'slope']) myseas <- as.numeric(m$fitted[,'sea']) myresid <- as.numeric(m$resid) myfit <- mylevel+myseas mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS') fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE)) (fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states) m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps)) (ss <- char2numeric(m2)) (pred <- predict(ss, x, n.ahead = par2)) mylagmax <- nx/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level') acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(mylevel,main='Level') spectrum(myseas,main='Seasonal') spectrum(myresid,main='Standardized Residals') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(mylevel,main='Level') cpgram(myseas,main='Seasonal') cpgram(myresid,main='Standardized Residals') par(op) dev.off() bitmap(file='test1.png') plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b') grid() dev.off() bitmap(file='test5.png') op <- par(mfrow = c(2,2)) hist(m$resid,main='Residual Histogram') plot(density(m$resid),main='Residual Kernel Density') qqnorm(m$resid,main='Residual Normal QQ Plot') qqline(m$resid) plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit') par(op) dev.off() bitmap(file='test6.png') par(mfrow = c(3,1), mar = c(3,3,3,3)) plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '') lines(x) polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA) polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA) lines(pred$pred, col = 'blue', lwd = 1.5) mtext(text = 'forecasts of the observed series', side = 3, adj = 0) plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '') lines(x) polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA) polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA) lines(pred$a[,1], col = 'blue', lwd = 1.5) mtext(text = 'forecasts of the level component', side = 3, adj = 0) plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '') lines(fit2.comps[,3]) polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA) polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA) lines(pred$a[,3], col = 'blue', lwd = 1.5) mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Level',header=TRUE) a<-table.element(a,'Slope',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Stand. Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,mylevel[i]) a<-table.element(a,myslope[i]) a<-table.element(a,myseas[i]) a<-table.element(a,myresid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Level',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.row.end(a) for (i in 1:par2) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,pred$pred[i]) a<-table.element(a,pred$a[i,1]) a<-table.element(a,pred$a[i,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation