Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
-3.144 -3.193 1.047 1.038 -1.134 -0.08485 -0.6671 1.324 1.423 1.472 -4.003 -2.891 1.623 2.798 -0.0211 -0.9951 -4.347 -0.5589 2.897 4.139 2.883 -2.993 1.271 -1.688 0.9789 1.109 -2.021 4.974 -1.196 1.09 -1.255 -4.021 -0.2052 -1.91 1.09 -0.9193 4.09 1.04 -3.43 -0.0211 -2.455 0.3824 -4.658 -0.9193 -0.738 -1.913 2.672 1.906 0.6228 2.271 1.795 -0.8605 -0.8605 -1.627 -3.08 -0.6764 0.8254 -0.9716 -0.03037 -0.4242 1.715 -0.0211 0.03766 -0.6269 -3.132 -0.2668 3.081 0.7051 0.7453 -0.91 -2.144 -0.2547 -2.91 0.07788 3.512 1.312 3.807 1.939 -1.913 -0.002562 -0.1867 -0.1867 -0.1846 -1.488 -2.021 -1.094 1.028 -1.377 -0.2547 0.8443 -1.298 -0.196 3.058 0.9882 -1.144 -0.1415 2.979 -6.436 0.7659 -3.403 1.09 0.8471 0.33 1.038 3.906 -0.1034 4.745 1.736 2.847 3.847 -0.8605 -3.972 0.1395 -0.6885 -2.094 -0.6885 -2.386 -0.7351 2.253 -1.738 0.02839 3.189 -0.1034 -1.972 -0.2052 3.09 -1.144 -3.187 -0.0211 -2.854 2.462 0.8657 -3.87 0.9479 1.979 3.038 -2.123 1.213 -4.103 -1.146 2.764 2.663 2.151 1.213 1.763 2.13 1.222 1.866 0.1602 2.979 -0.2547 -1.972 1.078 -0.1436 1.423 -0.337 -1.134 2.038 -1.278 0.3236 -1.116 -1.406 0.7453 -0.9531 -0.3865 -1.021 -1.962
Chart options
Title:
Y-axis minimum
Y-axis maximum
R Code
geomean <- function(x) { return(exp(mean(log(x)))) } harmean <- function(x) { return(1/mean(1/x)) } quamean <- function(x) { return(sqrt(mean(x*x))) } winmean <- function(x) { x <-sort(x[!is.na(x)]) n<-length(x) denom <- 3 nodenom <- n/denom if (nodenom>40) denom <- n/40 sqrtn = sqrt(n) roundnodenom = floor(nodenom) win <- array(NA,dim=c(roundnodenom,2)) for (j in 1:roundnodenom) { win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn } return(win) } trimean <- function(x) { x <-sort(x[!is.na(x)]) n<-length(x) denom <- 3 nodenom <- n/denom if (nodenom>40) denom <- n/40 sqrtn = sqrt(n) roundnodenom = floor(nodenom) tri <- array(NA,dim=c(roundnodenom,2)) for (j in 1:roundnodenom) { tri[j,1] <- mean(x,trim=j/n) tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2) } return(tri) } midrange <- function(x) { return((max(x)+min(x))/2) } q1 <- function(data,n,p,i,f) { np <- n*p; i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q2 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q3 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- data[i+1] } } q4 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- (data[i]+data[i+1])/2 } else { qvalue <- data[i+1] } } q5 <- function(data,n,p,i,f) { np <- (n-1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i+1] } else { qvalue <- data[i+1] + f*(data[i+2]-data[i+1]) } } q6 <- function(data,n,p,i,f) { np <- n*p+0.5 i <<- floor(np) f <<- np - i qvalue <- data[i] } q7 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- f*data[i] + (1-f)*data[i+1] } } q8 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { if (f == 0.5) { qvalue <- (data[i]+data[i+1])/2 } else { if (f < 0.5) { qvalue <- data[i] } else { qvalue <- data[i+1] } } } } midmean <- function(x,def) { x <-sort(x[!is.na(x)]) n<-length(x) if (def==1) { qvalue1 <- q1(x,n,0.25,i,f) qvalue3 <- q1(x,n,0.75,i,f) } if (def==2) { qvalue1 <- q2(x,n,0.25,i,f) qvalue3 <- q2(x,n,0.75,i,f) } if (def==3) { qvalue1 <- q3(x,n,0.25,i,f) qvalue3 <- q3(x,n,0.75,i,f) } if (def==4) { qvalue1 <- q4(x,n,0.25,i,f) qvalue3 <- q4(x,n,0.75,i,f) } if (def==5) { qvalue1 <- q5(x,n,0.25,i,f) qvalue3 <- q5(x,n,0.75,i,f) } if (def==6) { qvalue1 <- q6(x,n,0.25,i,f) qvalue3 <- q6(x,n,0.75,i,f) } if (def==7) { qvalue1 <- q7(x,n,0.25,i,f) qvalue3 <- q7(x,n,0.75,i,f) } if (def==8) { qvalue1 <- q8(x,n,0.25,i,f) qvalue3 <- q8(x,n,0.75,i,f) } midm <- 0 myn <- 0 roundno4 <- round(n/4) round3no4 <- round(3*n/4) for (i in 1:n) { if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){ midm = midm + x[i] myn = myn + 1 } } midm = midm / myn return(midm) } (arm <- mean(x)) sqrtn <- sqrt(length(x)) (armse <- sd(x) / sqrtn) (armose <- arm / armse) (geo <- geomean(x)) (har <- harmean(x)) (qua <- quamean(x)) (win <- winmean(x)) (tri <- trimean(x)) (midr <- midrange(x)) midm <- array(NA,dim=8) for (j in 1:8) midm[j] <- midmean(x,j) midm bitmap(file='test1.png') lb <- win[,1] - 2*win[,2] ub <- win[,1] + 2*win[,2] if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax)) lines(ub,lty=3) lines(lb,lty=3) grid() dev.off() bitmap(file='test2.png') lb <- tri[,1] - 2*tri[,2] ub <- tri[,1] + 2*tri[,2] if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax)) lines(ub,lty=3) lines(lb,lty=3) grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Measure',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.element(a,'S.E.',header=TRUE) a<-table.element(a,'Value/S.E.',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Arithmetic Mean',header=TRUE) a<-table.element(a,signif(arm,6)) a<-table.element(a, signif(armse,6)) a<-table.element(a,signif(armose,6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Geometric Mean',header=TRUE) a<-table.element(a,signif(geo,6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Harmonic Mean',header=TRUE) a<-table.element(a,signif(har,6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Quadratic Mean',header=TRUE) a<-table.element(a,signif(qua,6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) for (j in 1:length(win[,1])) { a<-table.row.start(a) mylabel <- paste('Winsorized Mean (',j) mylabel <- paste(mylabel,'/') mylabel <- paste(mylabel,length(win[,1])) mylabel <- paste(mylabel,')') a<-table.element(a, mylabel,header=TRUE) a<-table.element(a,signif(win[j,1],6)) a<-table.element(a,signif(win[j,2],6)) a<-table.element(a,signif(win[j,1]/win[j,2],6)) a<-table.row.end(a) } for (j in 1:length(tri[,1])) { a<-table.row.start(a) mylabel <- paste('Trimmed Mean (',j) mylabel <- paste(mylabel,'/') mylabel <- paste(mylabel,length(tri[,1])) mylabel <- paste(mylabel,')') a<-table.element(a, mylabel,header=TRUE) a<-table.element(a,signif(tri[j,1],6)) a<-table.element(a,signif(tri[j,2],6)) a<-table.element(a,signif(tri[j,1]/tri[j,2],6)) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a, 'Median',header=TRUE) a<-table.element(a,signif(median(x),6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Midrange',header=TRUE) a<-table.element(a,signif(midr,6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'Weighted Average at Xnp',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[1],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'Weighted Average at X(n+1)p',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[2],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'Empirical Distribution Function',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[3],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'Empirical Distribution Function - Averaging',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[4],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'Empirical Distribution Function - Interpolation',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[5],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'Closest Observation',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[6],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'True Basic - Statistics Graphics Toolkit',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[7],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- 'Midmean' mylabel <- paste(mymid,'MS Excel (old versions)',sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,signif(midm[8],6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Number of observations',header=TRUE) a<-table.element(a,signif(length(x),6)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation