Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
5570 5555 5555 5560 5570 5565 5580 5540 5575 5585 5585 5570 5610 5585 5580 5605 5600 5585 5655 5605 5575 5590 5570 5590 5590 5570 5590 5565 5580 5605 5585 5615 5595 5580 5555 5605 5600 5630 5625 5620 5645 5660 5640 5640 5660 5660 5690 5715 5675 5685 5710 5720 5710 5710 5755 5755 5735 5720 5770 5775 5790 5800 5780 5775 5780 5785 5720 5740 5725 5785 5835 5810 5815 5815 5840 5840 5845 5865 5900 5900 5915 5940 5950 5940 5955 5945 5945 5975 5960 5930 5950 5970 5980 6000 6000 6020 6015 6040 6035 6010 6025 6030 5955 6075 6055 6040 6025 6015 6025 6015 6020 6050 6050 6040 6090 6030 5990
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Seasonal window
(?)
Seasonal degree
(?)
0
0
1
Trend window
(?)
Trend degree
(?)
1
1
0
Low-pass window
(?)
Low-pass degree
(?)
1
1
0
Robust loess fitting
FALSE
FALSE
TRUE
Chart options
Title:
R Code
par1 <- as.numeric(par1) #seasonal period if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window par3 <- as.numeric(par3) #s.degree if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window par5 <- as.numeric(par5)#t.degree if (par6 != '') par6 <- as.numeric(par6)#l.window par7 <- as.numeric(par7)#l.degree if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust nx <- length(x) x <- ts(x,frequency=par1) if (par6 != '') { m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8) } else { m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8) } m$time.series m$win m$deg m$jump m$inner m$outer bitmap(file='test1.png') plot(m,main=main) dev.off() mylagmax <- nx/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend') acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Component',header=TRUE) a<-table.element(a,'Window',header=TRUE) a<-table.element(a,'Degree',header=TRUE) a<-table.element(a,'Jump',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,m$win['s']) a<-table.element(a,m$deg['s']) a<-table.element(a,m$jump['s']) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,m$win['t']) a<-table.element(a,m$deg['t']) a<-table.element(a,m$jump['t']) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Low-pass',header=TRUE) a<-table.element(a,m$win['l']) a<-table.element(a,m$deg['l']) a<-table.element(a,m$jump['l']) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Fitted',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,'Remainder',header=TRUE) a<-table.row.end(a) for (i in 1:nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]+m$time.series[i,'remainder']) a<-table.element(a,m$time.series[i,'seasonal']) a<-table.element(a,m$time.series[i,'trend']) a<-table.element(a,m$time.series[i,'remainder']) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation