Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
4150 4300 4300 4450 4500 4400 3950 2150 4350 4550 4600 4250 4350 4400 4300 4350 4350 4400 3850 2300 4300 4350 4350 4200 4150 4450 4300 4350 4300 4350 3900 2250 4300 4450 4400 4250 4250 4300 4450 3900 4350 4500 3800 2450 4400 4500 4500 4400 4450 4600 4700 4700 2950 3750 4050 2550 4600 5000 5100 4900 4950 5000 4950 5100 5250 5200 4300 2650 4950 5200 5350 5150 5350 5550 5400 5450 5450 5200 4400 2650 5100 5200 5300 4900 5200 5300 5250 5150 5050 4900 4150 2800 5100 5250 5200 5000 5150 5250 5250 5350 5450 5300 4300 3000 5300 5400 5550 5350 5500 5750 5750 5700 5800 5800 4600 3150 5500 5750 5950 5600 6100 6250 6150 6050 6300 5950
Type of Seasonality
additive
additive
multiplicative
Seasonal Period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
par2 <- as.numeric(par2) x <- ts(x,freq=par2) m <- decompose(x,type=par1) m$figure bitmap(file='test1.png') plot(m) dev.off() mylagmax <- length(x)/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend') acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observations',header=TRUE) a<-table.element(a,'Fit',header=TRUE) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Random',header=TRUE) a<-table.row.end(a) for (i in 1:length(m$trend)) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6)) a<-table.element(a,signif(m$trend[i],6)) a<-table.element(a,signif(m$seasonal[i],6)) a<-table.element(a,signif(m$random[i],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation