Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
4 4 2 3 3 3 3 4 4 4 2 2 4 5 4 4 2 2 5 4 1 5 3 4 4 2 4 2 3 4 4 4 4 4 4 5 4 4 3 4 4 3 2 5 4 3 4 4 3 4 4 4 4 5 4 2 4 5 2 3 4 3 4 4 4 5 3 4 4 4 4 4 4 4 4 4 3 3 2 2 2 3 4 4 4 4 4 4 4 2 3 2 3 4 5 4 5 3 4 5 2 3 4 5 4 5 5 5 4 4 4 4 4 4 5 5 5 4 4 4 5 4 4 4 4 2 4 2 4 3 5 2 4 3 3 4 5 3 2 5 4 4 2 5 3 3 3 4 4 4 4 4 4 5 3 NA 4 4 5 3 4 2 5 4 3
Data Y:
13 16 17 15 16 16 18 16 17 17 17 15 16 14 16 17 16 15 17 16 15 16 15 17 14 16 15 16 16 13 15 17 15 13 17 15 14 14 18 15 17 13 16 15 15 16 15 13 17 18 18 11 14 13 15 17 16 15 17 16 16 16 15 12 17 14 14 16 15 15 14 13 18 15 16 14 15 17 16 10 16 17 17 20 17 18 15 17 14 15 17 16 17 15 16 18 18 16 17 15 13 15 17 16 16 15 16 16 14 15 12 19 16 16 17 16 14 15 14 16 15 17 15 16 16 15 15 11 16 18 13 11 16 18 15 19 17 13 14 16 13 17 14 19 14 16 12 16 16 15 12 15 17 14 15 18 15 18 15 15 16 13 16 14 16
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
library(psychometric) x <- x[!is.na(y)] y <- y[!is.na(y)] y <- y[!is.na(x)] x <- x[!is.na(x)] bitmap(file='test1.png') histx <- hist(x, plot=FALSE) histy <- hist(y, plot=FALSE) maxcounts <- max(c(histx$counts, histx$counts)) xrange <- c(min(x),max(x)) yrange <- c(min(y),max(y)) nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) par(mar=c(4,4,1,1)) plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main) par(mar=c(0,4,1,1)) barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0) par(mar=c(4,0,1,1)) barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE) dev.off() lx = length(x) makebiased = (lx-1)/lx varx = var(x)*makebiased vary = var(y)*makebiased corxy <- cor.test(x,y,method='pearson', na.rm = T) cxy <- as.matrix(corxy$estimate)[1,1] load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Statistic',1,TRUE) a<-table.element(a,'Variable X',1,TRUE) a<-table.element(a,'Variable Y',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean',header=TRUE) a<-table.element(a,mean(x)) a<-table.element(a,mean(y)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Biased Variance',header=TRUE) a<-table.element(a,varx) a<-table.element(a,vary) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Biased Standard Deviation',header=TRUE) a<-table.element(a,sqrt(varx)) a<-table.element(a,sqrt(vary)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Covariance',header=TRUE) a<-table.element(a,cov(x,y),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Correlation',header=TRUE) a<-table.element(a,cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Determination',header=TRUE) a<-table.element(a,cxy*cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'T-Test',header=TRUE) a<-table.element(a,as.matrix(corxy$statistic)[1,1],2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (2 sided)',header=TRUE) a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (1 sided)',header=TRUE) a<-table.element(a,p2/2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'95% CI of Correlation',header=TRUE) a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degrees of Freedom',header=TRUE) a<-table.element(a,lx-2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Number of Observations',header=TRUE) a<-table.element(a,lx,2) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') library(moments) library(nortest) jarque.x <- jarque.test(x) jarque.y <- jarque.test(y) if(lx>7) { ad.x <- ad.test(x) ad.y <- ad.test(y) } a<-table.start() a<-table.row.start(a) a<-table.element(a,'Normality Tests',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('jarque.x'),'</pre>',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('jarque.y'),'</pre>',sep='')) a<-table.row.end(a) if(lx>7) { a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('ad.x'),'</pre>',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('ad.y'),'</pre>',sep='')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') library(car) bitmap(file='test2.png') qqPlot(x,main='QQplot of variable x') dev.off() bitmap(file='test3.png') qqPlot(y,main='QQplot of variable y') dev.off()
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation