Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
13 22 16 24 17 26 15 21 16 26 16 25 18 21 16 24 17 27 17 28 17 23 15 25 16 24 14 24 16 24 17 25 16 25 15 25 17 25 16 24 15 26 16 26 15 25 17 26 14 23 16 24 15 24 16 25 16 25 13 24 15 28 17 27 15 25 13 23 17 23 15 24 14 24 14 22 18 25 15 25 17 28 13 22 16 28 15 25 15 24 16 24 15 23 13 25 17 26 18 25 18 27 11 26 14 23 13 25 15 21 17 22 16 24 15 25 17 27 16 24 16 26 16 21 15 27 12 22 17 23 14 24 14 25 16 24 15 23 15 28 14 23 13 24 18 26 15 22 16 25 14 25 15 24 17 24 16 26 10 21 16 25 17 25 17 26 20 25 17 26 18 27 15 25 17 23 14 20 15 24 17 26 16 25 17 25 15 24 16 26 18 25 18 28 16 27 17 26 15 26 13 26 15 21 17 28 16 26 16 21 15 25 16 25 16 24 14 24 15 24 12 23 19 23 16 24 16 24 17 25 16 28 14 23 15 24 14 23 16 24 15 25 17 24 15 23 16 23 16 25 15 21 15 22 11 19 16 24 18 25 13 21 11 22 16 23 18 27 15 26 19 29 17 28 13 24 14 25 16 25 13 22 17 25 14 26 19 26 14 24 16 25 12 19 16 25 16 23 15 25 12 25 15 26 17 27 14 24 15 22 18 25 15 24 18 23 15 27 15 24 16 24 13 21 16 25 14 25 16 23
Names of X columns:
TVDCSUM SKSUM
Type of Correlation
TRUE
pearson
spearman
kendall
Chart options
Title:
R Code
par1 <- 'spearman' panel.tau <- function(x, y, digits=2, prefix='', cex.cor) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) rr <- cor.test(x, y, method=par1) r <- round(rr$p.value,2) txt <- format(c(r, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep='') if(missing(cex.cor)) cex <- 0.5/strwidth(txt) text(0.5, 0.5, txt, cex = cex) } panel.hist <- function(x, ...) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...) } x <- na.omit(x) y <- t(na.omit(t(y))) bitmap(file='test1.png') pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main) dev.off() load(file='createtable') n <- length(y[,1]) print(n) a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ',header=TRUE) for (i in 1:n) { a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) } a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) for (j in 1:n) { r <- cor.test(y[i,],y[j,],method=par1) a<-table.element(a,round(r$estimate,3)) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') ncorrs <- (n*n -n)/2 mycorrs <- array(0, dim=c(10,3)) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'pair',1,TRUE) a<-table.element(a,'Pearson r',1,TRUE) a<-table.element(a,'Spearman rho',1,TRUE) a<-table.element(a,'Kendall tau',1,TRUE) a<-table.row.end(a) cor.test(y[1,],y[2,],method=par1) for (i in 1:(n-1)) { for (j in (i+1):n) { a<-table.row.start(a) dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='') a<-table.element(a,dum,header=TRUE) rp <- cor.test(y[i,],y[j,],method='pearson') a<-table.element(a,round(rp$estimate,4)) rs <- cor.test(y[i,],y[j,],method='spearman') a<-table.element(a,round(rs$estimate,4)) rk <- cor.test(y[i,],y[j,],method='kendall') a<-table.element(a,round(rk$estimate,4)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=T) a<-table.element(a,paste('(',round(rp$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rs$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rk$p.value,4),')',sep='')) a<-table.row.end(a) for (iii in 1:10) { iiid100 <- iii / 100 if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1 if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1 if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1 } } } a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Type I error',1,TRUE) a<-table.element(a,'Pearson r',1,TRUE) a<-table.element(a,'Spearman rho',1,TRUE) a<-table.element(a,'Kendall tau',1,TRUE) a<-table.row.end(a) for (iii in 1:10) { iiid100 <- iii / 100 a<-table.row.start(a) a<-table.element(a,round(iiid100,2),header=T) a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2)) a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2)) a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation