Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
4 2 3 3 3 3 4 4 2 2 4 5 4 4 2 5 5 3 4 2 4 2 3 4 4 4 4 4 5 4 4 4 4 3 2 5 4 3 4 4 3 4 4 4 4 5 4 5 2 3 4 4 4 4 5 3 4 4 4 4 4 4 4 4 3 3 2 2 2 4 4 4 4 4 4 2 3 2 3 4 5 4 5 3 5 4 5 2 3 4 4 5 5 4 4 4 4 4 5 5 5 4 4 4 5 4 4 4 4 2 4 3 2 3 3 4 5 3 2 5 4 4 2 5 3 3 3 4 4 4 4 5 3 4 4 5 3 4 2 5 4 3
Sample Range:
(leave blank to include all observations)
From:
To:
Color code
(?)
Number of bins
(?)
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par2 <- '4' par1 <- '' library(MASS) library(car) par1 <- as.numeric(par1) if (par2 == '0') par2 = 'Sturges' else par2 <- as.numeric(par2) x <- as.ts(x) #otherwise the fitdistr function does not work properly r <- fitdistr(x,'normal') print(r) bitmap(file='test1.png') myhist<-hist(x,col=par1,breaks=par2,main=main,ylab=ylab,xlab=xlab,freq=F) curve(1/(r$estimate[2]*sqrt(2*pi))*exp(-1/2*((x-r$estimate[1])/r$estimate[2])^2),min(x),max(x),add=T) dev.off() bitmap(file='test3.png') qqPlot(x,dist='norm',main='QQ plot (Normal) with confidence intervals') grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Parameter',1,TRUE) a<-table.element(a,'Estimated Value',1,TRUE) a<-table.element(a,'Standard Deviation',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,r$estimate[1]) a<-table.element(a,r$sd[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'standard deviation',header=TRUE) a<-table.element(a,r$estimate[2]) a<-table.element(a,r$sd[2]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation