Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
3106.78 3235.94 2998.12 2896.3 2952 3060.24 2988.32 2889 2881.82 2969.22 3026.2 3146.08 3032.48 2719.74 2785.18 2797.28 2783.7 2822.84 2835.8 2823.22 2879.14 3003.5 2910.7 2895.54 2982.36 3087.2 3195.28 3272.72 3390.6 3676.12 4052.18 4431.2 4554.96 4279.7 4391.86 4482.82 4530.68 4580.66 4623.5 4720.14 4811.82 4980.18 5174.28 5181.24
Sample Range:
(leave blank to include all observations)
From:
To:
Testing Period
(?)
Default
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Box-Cox lambda transformation parameter (lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
1
0
1
2
Degree of seasonal differencing (D)
0
0
1
Seasonal period (s)
1
1
2
3
4
6
12
AR(p) order
White Noise
0
1
2
3
MA(q) order
0.95
0
1
2
SAR(P) order
0
1
2
SMA(Q) order
0
1
Include mean?
FALSE
TRUE
Chart options
R Code
par10 <- 'FALSE' par9 <- '0' par8 <- '0' par7 <- '2' par6 <- '3' par5 <- '1' par4 <- '0' par3 <- '1' par2 <- '1' par1 <- '4' par1 <- as.numeric(par1) #cut off periods par2 <- as.numeric(par2) #lambda par3 <- as.numeric(par3) #degree of non-seasonal differencing par4 <- as.numeric(par4) #degree of seasonal differencing par5 <- as.numeric(par5) #seasonal period par6 <- as.numeric(par6) #p par7 <- as.numeric(par7) #q par8 <- as.numeric(par8) #P par9 <- as.numeric(par9) #Q if (par10 == 'TRUE') par10 <- TRUE if (par10 == 'FALSE') par10 <- FALSE if (par2 == 0) x <- log(x) if (par2 != 0) x <- x^par2 lx <- length(x) first <- lx - 2*par1 nx <- lx - par1 nx1 <- nx + 1 fx <- lx - nx if (fx < 1) { fx <- par5*2 nx1 <- lx + fx - 1 first <- lx - 2*fx } first <- 1 if (fx < 3) fx <- round(lx/10,0) (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) (forecast <- predict(arima.out,fx)) (lb <- forecast$pred - 1.96 * forecast$se) (ub <- forecast$pred + 1.96 * forecast$se) if (par2 == 0) { x <- exp(x) forecast$pred <- exp(forecast$pred) lb <- exp(lb) ub <- exp(ub) } if (par2 != 0) { x <- x^(1/par2) forecast$pred <- forecast$pred^(1/par2) lb <- lb^(1/par2) ub <- ub^(1/par2) } if (par2 < 0) { olb <- lb lb <- ub ub <- olb } (actandfor <- c(x[1:nx], forecast$pred)) (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) bitmap(file='test1.png') opar <- par(mar=c(4,4,2,2),las=1) ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) plot(x,ylim=ylim,type='n',xlim=c(first,lx)) usr <- par('usr') rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') abline(h= (-3:3)*2 , col ='gray', lty =3) polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) lines(nx1:lx, lb , lty=2) lines(nx1:lx, ub , lty=2) lines(x, lwd=2) lines(nx1:lx, forecast$pred , lwd=2 , col ='white') box() par(opar) dev.off() prob.dec <- array(NA, dim=fx) prob.sdec <- array(NA, dim=fx) prob.ldec <- array(NA, dim=fx) prob.pval <- array(NA, dim=fx) perf.pe <- array(0, dim=fx) perf.spe <- array(0, dim=fx) perf.scalederr <- array(0, dim=fx) perf.mase <- array(0, dim=fx) perf.mase1 <- array(0, dim=fx) perf.mape <- array(0, dim=fx) perf.smape <- array(0, dim=fx) perf.mape1 <- array(0, dim=fx) perf.smape1 <- array(0,dim=fx) perf.se <- array(0, dim=fx) perf.mse <- array(0, dim=fx) perf.mse1 <- array(0, dim=fx) perf.rmse <- array(0, dim=fx) perf.scaleddenom <- 0 for (i in 2:fx) { perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1]) } perf.scaleddenom = perf.scaleddenom / (fx-1) for (i in 1:fx) { locSD <- (ub[i] - forecast$pred[i]) / 1.96 perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i] perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i]) perf.se[i] = (x[nx+i] - forecast$pred[i])^2 prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) } perf.mape[1] = abs(perf.pe[1]) perf.smape[1] = abs(perf.spe[1]) perf.mape1[1] = perf.mape[1] perf.smape1[1] = perf.smape[1] perf.mse[1] = perf.se[1] perf.mase[1] = abs(perf.scalederr[1]) perf.mase1[1] = perf.mase[1] for (i in 2:fx) { perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) perf.mape1[i] = perf.mape[i] / i perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i]) perf.smape1[i] = perf.smape[i] / i perf.mse[i] = perf.mse[i-1] + perf.se[i] perf.mse1[i] = perf.mse[i] / i perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i]) perf.mase1[i] = perf.mase[i] / i } perf.rmse = sqrt(perf.mse1) bitmap(file='test2.png') plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) dum <- forecast$pred dum[1:par1] <- x[(nx+1):lx] lines(dum, lty=1) lines(ub,lty=3) lines(lb,lty=3) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'time',1,header=TRUE) a<-table.element(a,'Y[t]',1,header=TRUE) a<-table.element(a,'F[t]',1,header=TRUE) a<-table.element(a,'95% LB',1,header=TRUE) a<-table.element(a,'95% UB',1,header=TRUE) a<-table.element(a,'p-value<br />(H0: Y[t] = F[t])',1,header=TRUE) a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) mylab <- paste('P(F[t]>Y[',nx,sep='') mylab <- paste(mylab,'])',sep='') a<-table.element(a,mylab,1,header=TRUE) a<-table.row.end(a) for (i in (nx-par5):nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.row.end(a) } for (i in 1:fx) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,round(x[nx+i],4)) a<-table.element(a,round(forecast$pred[i],4)) a<-table.element(a,round(lb[i],4)) a<-table.element(a,round(ub[i],4)) a<-table.element(a,round((1-prob.pval[i]),4)) a<-table.element(a,round((1-prob.dec[i]),4)) a<-table.element(a,round((1-prob.sdec[i]),4)) a<-table.element(a,round((1-prob.ldec[i]),4)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'time',1,header=TRUE) a<-table.element(a,'% S.E.',1,header=TRUE) a<-table.element(a,'PE',1,header=TRUE) a<-table.element(a,'MAPE',1,header=TRUE) a<-table.element(a,'sMAPE',1,header=TRUE) a<-table.element(a,'Sq.E',1,header=TRUE) a<-table.element(a,'MSE',1,header=TRUE) a<-table.element(a,'RMSE',1,header=TRUE) a<-table.element(a,'ScaledE',1,header=TRUE) a<-table.element(a,'MASE',1,header=TRUE) a<-table.row.end(a) for (i in 1:fx) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,round(perc.se[i],4)) a<-table.element(a,round(perf.pe[i],4)) a<-table.element(a,round(perf.mape1[i],4)) a<-table.element(a,round(perf.smape1[i],4)) a<-table.element(a,round(perf.se[i],4)) a<-table.element(a,round(perf.mse1[i],4)) a<-table.element(a,round(perf.rmse[i],4)) a<-table.element(a,round(perf.scalederr[i],4)) a<-table.element(a,round(perf.mase1[i],4)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation