Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
15 25 13 23 14 23 13 NA 12 NA 17 29 12 NA 13 NA 13 NA 16 27 12 20 12 22 13 21 16 28 15 25 12 20 NA NA NA NA 15 NA 12 NA 15 26 11 NA 13 21 13 NA 14 NA 14 NA 14 23 15 25 16 27 16 27 16 27 13 21 13 21 14 NA 13 21 14 24 12 NA 17 29 14 23 15 25 13 NA 14 23 15 25 19 33 14 23 13 21 12 NA NA 1 14 24 15 NA 15 25 12 NA 14 NA 11 19 12 20 10 17 NA NA 14 23 14 23 15 NA 15 25 13 21 15 25 16 27 12 20 17 29 15 26 NA 9 12 22 16 28 15 NA 15 NA 12 NA 13 NA 10 NA 14 23 11 19 12 20 14 24 12 19 14 NA 12 20 13 NA 13 21 14 NA 12 20 15 25 13 21 13 NA 11 18 12 20 16 NA 11 19 13 NA 12 19 17 NA 14 24 15 25 8 14 13 21 13 NA 15 NA 14 25 13 21 14 NA 12 NA 19 NA 15 NA 14 NA 14 23 15 NA 13 NA 15 NA 14 23 11 NA 17 29 13 21 9 NA 12 19 13 21 17 29 14 23 13 NA 16 27 14 NA 14 23 14 24 10 NA 12 NA 13 NA 14 23 18 NA 14 24 14 NA 13 22 13 NA 16 28 NA NA 13 22 14 23 8 14 13 NA 13 22 16 NA 14 23 13 22 14 23 12 20 16 27 18 NA 16 NA 15 26 18 31 15 25 14 23 14 NA 15 25 9 NA 17 NA 11 19 15 25 NA 7 15 25 13 NA NA NA 15 NA 15 25 14 NA 13 21
Names of X columns:
EPSUM TVDCSUM
Response Variable (column number)
Factor Variable (column number)
Include Intercept Term ?
FALSE
TRUE
FALSE
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par3 <- 'FALSE' par2 <- '' par1 <- '' cat1 <- as.numeric(par1) # cat2<- as.numeric(par2) # intercept<-as.logical(par3) x <- t(x) x1<-as.numeric(x[,cat1]) f1<-as.character(x[,cat2]) xdf<-data.frame(x1,f1) (V1<-dimnames(y)[[1]][cat1]) (V2<-dimnames(y)[[1]][cat2]) names(xdf)<-c('Response', 'Treatment') if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) ) (aov.xdf<-aov(lmxdf) ) (anova.xdf<-anova(lmxdf) ) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'means',,TRUE) for(i in 1:length(lmxdf$coefficients)){ a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE) } a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Statistics', 5+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ',,TRUE) a<-table.element(a, 'Df',,FALSE) a<-table.element(a, 'Sum Sq',,FALSE) a<-table.element(a, 'Mean Sq',,FALSE) a<-table.element(a, 'F value',,FALSE) a<-table.element(a, 'Pr(>F)',,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, V2,,TRUE) a<-table.element(a, anova.xdf$Df[1],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residuals',,TRUE) a<-table.element(a, anova.xdf$Df[2],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') bitmap(file='anovaplot.png') boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1) dev.off() if(intercept==TRUE){ 'Tukey Plot' thsd<-TukeyHSD(aov.xdf) bitmap(file='TukeyHSDPlot.png') plot(thsd) dev.off() } if(intercept==TRUE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ', 1, TRUE) for(i in 1:4){ a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE) } a<-table.row.end(a) for(i in 1:length(rownames(thsd[[1]]))){ a<-table.row.start(a) a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE) for(j in 1:4){ a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') } if(intercept==FALSE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'TukeyHSD Message', 1,TRUE) a<-table.row.end(a) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab') } library(car) lt.lmxdf<-leveneTest(lmxdf) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) for (i in 1:3){ a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Group', 1, TRUE) for (i in 1:3){ a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation