Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
5410.4 5432.2 5452.9 5477.6 5472.5 5454.9 5446 5010.6 5395.9 5360 5336.9 5333.9 5329.6 5345.7 5353.8 5377.2 5334.1 5351.1 5001 5246.4 5230 5115.8 4972.6 5077.6 5056.9 5070.7 4799.3 5076 5021.5 5026.4 4981.9 4936.6 4901.8 4853.8 4839.2 4821.3 4840.5 4847.6 4832.3 4814.7 4806.4 4803.4 4770.3 4723.4 4667.1 4636.8 4613.2 4605.3 4590.4 4595.4 4600.1 4543.3 4596.4 4575.4 4547.9 4503.7 4446.3 4401.4 4354.3 4336.3 4300.9 4304.1 4273.2 4279.9 4243.1 4199.1 4177.6 4141.7 4088.3 4021.4 3981.2 3937.2 3893.1 3864.7 3847.8 3840.8 3828.4 3798.6 3773 3737.8 3699 3674 3648.8 3645.6 3331 3674.7 3714.5 3739.7 3759.7 3708.6 3717.3 3705.3 3612.8 3665 3670.8 3687.6 3708.2 3737.2 3748.7 3785.3 3787.1 3785.8 3749.7 3716.3 3650 3096.9 3703.2 3716 3736.9 3771.9 3704 3824.2 3733.5 3827.5 3827.6 3696.5 3675.8 3757.5 3753.3 3418.7 3772.9
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Type of Exponential Smoothing
(?)
Double
Single
Double
Triple
Type of seasonality
(?)
additive
additive
multiplicative
Number of Forecasts
12
12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Chart options
R Code
par4 <- '12' par3 <- 'additive' par2 <- 'Single' par1 <- '12' par1 <- as.numeric(par1) par4 <- as.numeric(par4) if (par2 == 'Single') K <- 1 if (par2 == 'Double') K <- 2 if (par2 == 'Triple') K <- par1 nx <- length(x) nxmK <- nx - K x <- ts(x, frequency = par1) if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F) if (par2 == 'Double') fit <- HoltWinters(x, gamma=F) if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3) fit myresid <- x - fit$fitted[,'xhat'] bitmap(file='test1.png') op <- par(mfrow=c(2,1)) plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing') plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors') par(op) dev.off() bitmap(file='test2.png') p <- predict(fit, par4, prediction.interval=TRUE) np <- length(p[,1]) plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing') dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF') spectrum(myresid,main='Residals Periodogram') cpgram(myresid,main='Residal Cumulative Periodogram') qqnorm(myresid,main='Residual Normal QQ Plot') qqline(myresid) par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,fit$alpha) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,fit$beta) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'gamma',header=TRUE) a<-table.element(a,fit$gamma) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Fitted',header=TRUE) a<-table.element(a,'Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:nxmK) { a<-table.row.start(a) a<-table.element(a,i+K,header=TRUE) a<-table.element(a,x[i+K]) a<-table.element(a,fit$fitted[i,'xhat']) a<-table.element(a,myresid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Forecast',header=TRUE) a<-table.element(a,'95% Lower Bound',header=TRUE) a<-table.element(a,'95% Upper Bound',header=TRUE) a<-table.row.end(a) for (i in 1:np) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,p[i,'fit']) a<-table.element(a,p[i,'lwr']) a<-table.element(a,p[i,'upr']) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation