Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
7 7 11 11 10 9 9 11 NA 11 6 8 13 13 10 9 5 NA 9 13 14 13 7 11 8 11 12 9 14 9 11 9 6 NA 9 11 9 13 11 NA 10 8 10 4 9 10 9 NA 12 14 12 12 9 9 9 7 10 11 11 10 9 11 11 10 10 7 11 13 11 11 9 9 11 9 10 13 11 13 14 8 10 10 10 9 9 8 9 NA 12 10 11 10 10 13 12 10 10 12 5 11 7 11 10 11 11 14 11 14 12 13 13 10 7 11 9 8 9 8 9 12 9 10 12 10 9 10 13 10 NA 10 9 13 12 NA 11 12 13 NA 10 10 7 9 13 13 11 11 12 13 14 12 9 13 10 8 10 10 NA 10 9 12 10 9 10 9 11 8 10 9 10
Data Y:
10 13 14 NA NA 13 13 NA NA 14 14 12 12 11 12 14 NA NA 11 NA 13 NA 13 NA NA NA 12 12 13 13 10 12 13 NA 10 14 NA 10 10 14 NA 14 10 13 12 12 NA 12 10 NA 14 NA NA 8 11 10 NA 14 12 NA 14 13 13 13 12 10 14 11 10 13 NA NA NA NA NA 12 13 11 10 14 NA 7 NA 13 NA 15 13 14 NA 13 11 NA 14 NA 14 NA 12 13 14 13 NA NA 12 10 NA NA NA NA NA 12 NA NA NA 9 14 12 13 NA 13 11 12 11 NA 12 NA 12 13 NA NA NA 8 12 13 NA 8 NA 13 NA 12 15 14 NA 11 12 10 14 10 15 11 NA NA 12 13 12 9 NA 14 NA NA 14 12 15 11 NA NA NA 12 NA 11
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
library(psychometric) x <- x[!is.na(y)] y <- y[!is.na(y)] y <- y[!is.na(x)] x <- x[!is.na(x)] bitmap(file='test1.png') histx <- hist(x, plot=FALSE) histy <- hist(y, plot=FALSE) maxcounts <- max(c(histx$counts, histx$counts)) xrange <- c(min(x),max(x)) yrange <- c(min(y),max(y)) nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) par(mar=c(4,4,1,1)) plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main) par(mar=c(0,4,1,1)) barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0) par(mar=c(4,0,1,1)) barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE) dev.off() lx = length(x) makebiased = (lx-1)/lx varx = var(x)*makebiased vary = var(y)*makebiased corxy <- cor.test(x,y,method='pearson', na.rm = T) cxy <- as.matrix(corxy$estimate)[1,1] load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Statistic',1,TRUE) a<-table.element(a,'Variable X',1,TRUE) a<-table.element(a,'Variable Y',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean',header=TRUE) a<-table.element(a,mean(x)) a<-table.element(a,mean(y)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Biased Variance',header=TRUE) a<-table.element(a,varx) a<-table.element(a,vary) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Biased Standard Deviation',header=TRUE) a<-table.element(a,sqrt(varx)) a<-table.element(a,sqrt(vary)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Covariance',header=TRUE) a<-table.element(a,cov(x,y),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Correlation',header=TRUE) a<-table.element(a,cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Determination',header=TRUE) a<-table.element(a,cxy*cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'T-Test',header=TRUE) a<-table.element(a,as.matrix(corxy$statistic)[1,1],2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (2 sided)',header=TRUE) a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (1 sided)',header=TRUE) a<-table.element(a,p2/2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'95% CI of Correlation',header=TRUE) a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degrees of Freedom',header=TRUE) a<-table.element(a,lx-2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Number of Observations',header=TRUE) a<-table.element(a,lx,2) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') library(moments) library(nortest) jarque.x <- jarque.test(x) jarque.y <- jarque.test(y) if(lx>7) { ad.x <- ad.test(x) ad.y <- ad.test(y) } a<-table.start() a<-table.row.start(a) a<-table.element(a,'Normality Tests',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('jarque.x'),'</pre>',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('jarque.y'),'</pre>',sep='')) a<-table.row.end(a) if(lx>7) { a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('ad.x'),'</pre>',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('ad.y'),'</pre>',sep='')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') library(car) bitmap(file='test2.png') qqPlot(x,main='QQplot of variable x') dev.off() bitmap(file='test3.png') qqPlot(y,main='QQplot of variable y') dev.off()
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation