Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
4 4 2 3 3 3 3 4 4 4 2 2 4 5 4 4 2 2 5 4 1 5 3 4 4 2 4 2 3 4 4 4 4 4 4 5 4 4 3 4 4 3 2 5 4 3 4 4 3 4 4 4 4 5 4 2 4 5 2 3 4 3 4 4 4 5 3 4 4 4 4 4 4 4 4 4 3 3 2 2 2 3 4 4 4 4 4 4 4 2 3 2 3 4 5 4 5 3 4 5 2 3 4 5 4 5 5 5 4 4 4 4 4 4 5 5 5 4 4 4 5 4 4 4 4 2 4 2 4 3 5 2 4 3 3 4 5 3 2 5 4 4 2 5 3 3 3 4 4 4 4 4 4 5 3 NA 4 4 5 3 4 2 5 4 3
Data Y:
13 16 17 15 16 16 18 16 17 17 17 15 16 14 16 17 16 15 17 16 15 16 15 17 14 16 15 16 16 13 15 17 15 13 17 15 14 14 18 15 17 13 16 15 15 16 15 13 17 18 18 11 14 13 15 17 16 15 17 16 16 16 15 12 17 14 14 16 15 15 14 13 18 15 16 14 15 17 16 10 16 17 17 20 17 18 15 17 14 15 17 16 17 15 16 18 18 16 17 15 13 15 17 16 16 15 16 16 14 15 12 19 16 16 17 16 14 15 14 16 15 17 15 16 16 15 15 11 16 18 13 11 16 18 15 19 17 13 14 16 13 17 14 19 14 16 12 16 16 15 12 15 17 14 15 18 15 18 15 15 16 13 16 14 16
Sample Range:
(leave blank to include all observations)
From:
To:
xgridsize
ygridsize
xbandwidth
(zero to use default)
ybandwidth
(zero to use default)
correlation
(zero to use actual correlation)
display contours
(Y/N)
Y
Y
N
display data points
(Y/N)
Y
Y
N
colors
terrain.colors
terrain.colors
rainbow
heat.colors
topo.colors
cm.colors
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par1 <- as(par1,'numeric') par2 <- as(par2,'numeric') par3 <- as(par3,'numeric') par4 <- as(par4,'numeric') par5 <- as(par5,'numeric') library('GenKern') x <- x[!is.na(y)] y <- y[!is.na(y)] y <- y[!is.na(x)] x <- x[!is.na(x)] if (par3==0) par3 <- dpik(x) if (par4==0) par4 <- dpik(y) if (par5==0) par5 <- cor(x,y) if (par1 > 500) par1 <- 500 if (par2 > 500) par2 <- 500 if (par8 == 'terrain.colors') mycol <- terrain.colors(100) if (par8 == 'rainbow') mycol <- rainbow(100) if (par8 == 'heat.colors') mycol <- heat.colors(100) if (par8 == 'topo.colors') mycol <- topo.colors(100) if (par8 == 'cm.colors') mycol <- cm.colors(100) bitmap(file='bidensity.png') op <- KernSur(x,y, xgridsize=par1, ygridsize=par2, correlation=par5, xbandwidth=par3, ybandwidth=par4) image(op$xords, op$yords, op$zden, col=mycol, axes=TRUE,main=main,xlab=xlab,ylab=ylab) if (par6=='Y') contour(op$xords, op$yords, op$zden, add=TRUE) if (par7=='Y') points(x,y) (r<-lm(y ~ x)) abline(r) box() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Bandwidth',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'x axis',header=TRUE) a<-table.element(a,par3) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'y axis',header=TRUE) a<-table.element(a,par4) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Correlation',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'correlation used in KDE',header=TRUE) a<-table.element(a,par5) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'correlation(x,y)',header=TRUE) a<-table.element(a,cor(x,y)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation