Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
4838 5531 5367.5 5013.5 5959.5 6334 5919 6248.5 5701 6530.5 7145.5 6819 7037 7809 6300 7143.5 7234.5 6567.5 6090 5654 6608 7566 6352.5 8592 6631.5 6852 7538 8407 7541 9904.5 9371 8091.5 8303.5 8617.5 10453.5 9990.5 8337 8336.5 10345.5 11060.5 9384.5 8357 8366 8404.5 8068 6518.5 9355 7298.5 8012 7189 6992 10277 7146.5 7102 7257 7088.5 9070.5 9606.5 6280 6248 6311.5 6434 7096.5 6601.5 5905 7006.5 6113.5 6911.5 6450.5 6504 7710 7045 6302.5 6810 7567 7051 7820 8514 8180 8140 8349.5 8474 7880 8130.5 8020.5 8232.5 8457 7468.5 6763 7877.5 7438 7131 7270 7203.5 7010 6564.5 6734.5 7571.5 6491 6489.5 6883.5 6958.5 5731.5 7157.5 6336 6862.5 7175.5 7408.5 7052 6685.5 7098.5 7048 7017 7099 7310 7868
Sample Range:
(leave blank to include all observations)
From:
To:
Number of time lags
FALSE
Default
5
6
7
8
9
10
11
12
24
36
48
60
Box-Cox transformation parameter (Lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
2
0
1
2
Degree of seasonal differencing (D)
0
0
1
2
Seasonality
1
12
1
2
3
4
6
12
CI type
3
White Noise
MA
Confidence Interval
Use logarithms with this base
(overrules the Box-Cox lambda parameter)
(?)
Chart options
R Code
par8 <- '' par7 <- '0.95' par6 <- 'White Noise' par5 <- '12' par4 <- '0' par3 <- '0' par2 <- '1' par1 <- 'Default' if (par1 == 'Default') { par1 = 10*log10(length(x)) } else { par1 <- as.numeric(par1) } par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) par5 <- as.numeric(par5) if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma' par7 <- as.numeric(par7) if (par8 != '') par8 <- as.numeric(par8) x <- na.omit(x) ox <- x if (par8 == '') { if (par2 == 0) { x <- log(x) } else { x <- (x ^ par2 - 1) / par2 } } else { x <- log(x,base=par8) } if (par3 > 0) x <- diff(x,lag=1,difference=par3) if (par4 > 0) x <- diff(x,lag=par5,difference=par4) bitmap(file='picts.png') op <- par(mfrow=c(2,1)) plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value') if (par8=='') { mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } else { mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } plot(x,type='l', main=mytitle,xlab='time',ylab='value') par(op) dev.off() bitmap(file='pic1.png') racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub) dev.off() bitmap(file='pic2.png') rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub) dev.off() (myacf <- c(racf$acf)) (mypacf <- c(rpacf$acf)) lengthx <- length(x) sqrtn <- sqrt(lengthx) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,'ACF(k)',header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 2:(par1+1)) { a<-table.row.start(a) a<-table.element(a,i-1,header=TRUE) a<-table.element(a,round(myacf[i],6)) mytstat <- myacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Partial Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,'PACF(k)',header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 1:par1) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,round(mypacf[i],6)) mytstat <- mypacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation