Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
11 10 11 15 11 13 11 13 10 11 14 15 9 12 11 15 11 14 12 12 10 15 10 9 10 15 14 14 12 11 10 11 9 15 10 0 12 12 10 11 13 12 8 8 12 14 11 14 11 14 12 12 12 14 12 13 11 14 14 14 11 8 11 14 11 15 10 3 12 14 12 13 10 12 14 12 12 14 12 13 11 12 11 13 11 10 15 15 11 15 11 5 10 9 0 11 10 12 11 0 12 14 10 15 12 12 9 13 10 15 7 12 9 14 12 12 11 12 12 10 13 11 11 13 11 13 12 13 9 13 13 12 11 10 10 12 8 10 11 13 12 11 11 15 8 9 11 10 8 14 11 10 7 15 10 13 9 10 11 13 11 15 9 12 11 11 11 13 13 15 10 11 14 14 11 14 11 15 9 13 10 12 13 12 9 15 12 12 11 15 14 14 12 14 12 12 7 15 11 15 11 9 12 14 12 15 11 15 11 7 11 13 15 12 12 12 12 15 11 14 12 10 10 11 11 10 11 13 9 11 14 14 11 13 8 13 11 15 11 13 13 11 11 11 11 14 14 15 11 13 11 13 11 13 8 13 10 11 11 14 11 14 14 13 12 15 12 12 12 12 10 12 13 13 3 7 10 12 13 14 7 15 11 15 12 12 11 13 11 13 11 13 12 14 8 15 14 13 14 14 12 12 12 13 14 9 12 11 10 13 11 13 11 11 7 10 13 15 10 14 11 13 9 13 13 15 11 14 10 15 11 14 12 12 11 13 11 11
Names of X columns:
EP ITH
Column number of first sample
Column number of second sample
Confidence
Alternative
two.sided
two.sided
less
greater
Are observations paired?
unpaired
unpaired
paired
Null Hypothesis
Chart options
Title:
R Code
par1 <- as.numeric(par1) #column number of first sample par2 <- as.numeric(par2) #column number of second sample par3 <- as.numeric(par3) #confidence (= 1 - alpha) if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE par6 <- as.numeric(par6) #H0 z <- t(y) if (par1 == par2) stop('Please, select two different column numbers') if (par1 < 1) stop('Please, select a column number greater than zero for the first sample') if (par2 < 1) stop('Please, select a column number greater than zero for the second sample') if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller') if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller') if (par3 <= 0) stop('The confidence level should be larger than zero') if (par3 >= 1) stop('The confidence level should be smaller than zero') (r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3)) (v.t <- var.test(z[,par1],z[,par2],conf.level=par3)) (r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3)) (w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3)) (ks.t <- ks.test(z[,par1],z[,par2],alternative=par4)) m1 <- mean(z[,par1],na.rm=T) m2 <- mean(z[,par2],na.rm=T) mdiff <- m1 - m2 newsam1 <- z[!is.na(z[,par1]),par1] newsam2 <- z[,par2]+mdiff newsam2 <- newsam2[!is.na(newsam2)] (ks1.t <- ks.test(newsam1,newsam2,alternative=par4)) mydf <- data.frame(cbind(z[,par1],z[,par2])) colnames(mydf) <- c('Variable 1','Variable 2') bitmap(file='test1.png') boxplot(mydf, notch=TRUE, ylab='value',main=main) dev.off() bitmap(file='test2.png') qqnorm(z[,par1],main='Normal QQplot - Variable 1') qqline(z[,par1]) dev.off() bitmap(file='test3.png') qqnorm(z[,par2],main='Normal QQplot - Variable 2') qqline(z[,par2]) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) if(!paired){ a<-table.row.start(a) a<-table.element(a,'Mean of Sample 1',header=TRUE) a<-table.element(a,r.t$estimate[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean of Sample 2',header=TRUE) a<-table.element(a,r.t$estimate[[2]]) a<-table.row.end(a) } else { a<-table.row.start(a) a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE) a<-table.element(a,r.t$estimate) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,'t-stat',header=TRUE) a<-table.element(a,r.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,r.t$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,r.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,r.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,r.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(r.t$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'F-test to compare two variances',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'F-stat',header=TRUE) a<-table.element(a,v.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,v.t$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,v.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,v.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,v.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(v.t$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) if(!paired){ a<-table.row.start(a) a<-table.element(a,'Mean of Sample 1',header=TRUE) a<-table.element(a,r.w$estimate[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean of Sample 2',header=TRUE) a<-table.element(a,r.w$estimate[[2]]) a<-table.row.end(a) } else { a<-table.row.start(a) a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE) a<-table.element(a,r.w$estimate) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,'t-stat',header=TRUE) a<-table.element(a,r.w$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,r.w$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,r.w$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,r.w$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,r.w$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(r.w$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) myWlabel <- 'Wilcoxon Signed-Rank Test' if (par5=='unpaired') myWlabel = 'Wilcoxon Rank-Sum Test (Mann–Whitney U test)' a<-table.element(a,paste(myWlabel,' with continuity correction (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'W',header=TRUE) a<-table.element(a,w.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,w.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,w.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,w.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Kolmogorov-Smirnov Test to compare <i>Distributions</i> of two Samples',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'KS Statistic',header=TRUE) a<-table.element(a,ks.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,ks.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Kolmogorov-Smirnov Test to compare <i>Distributional Shape</i> of two Samples',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'KS Statistic',header=TRUE) a<-table.element(a,ks1.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,ks1.t$p.value) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation