Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
2755 2765 3000 2890 2940 3290 2815 3035 3070 3040 2685 2540 3090 2995 3440 3335 3205 3285 2790 3225 3360 3275 3505 3185 3470 3510 3840 3605 3655 3555 3140 3380 3255 3460 3245 3120 3265 3220 3140 3050 3300 2950 2630 2795 2840 2945 2790 2605 4590 4230 4245 4300 4475 3910 4100 3500 4390 3550 3865 3715 3310 3945 5050 4350 4060 4345 4360 4915 4650 4805 4775 4220 3975 3820 5515 4895 5535 4230 3695 5590 5000 4875 4360 4405 4500 4070 4800 4080 4850 4105 3805 5060 4060 4600 4635 3900 4120 3960 4400 3700 3970 4550 5140 5000 3650 4300 3650 3355 4000 3450 3295 3390 3415 3440 3680 3900 3965 4295 4210 4100 4690 3860 4250 4495 3800 3845
Box-Cox transformation parameter
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree (d) of non-seasonal differencing
0
0
1
2
Degree (D) of seasonal differencing
0
0
1
2
Seasonal Period
12
1
2
3
4
12
Chart options
R Code
par1 <- as.numeric(par1) par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) if (par1 == 0) { x <- log(x) } else { x <- (x ^ par1 - 1) / par1 } if (par2 > 0) x <- diff(x,lag=1,difference=par2) if (par3 > 0) x <- diff(x,lag=par4,difference=par3) bitmap(file='test1.png') r <- spectrum(x,main='Raw Periodogram') dev.off() bitmap(file='test2.png') cpgram(x,main='Cumulative Periodogram') dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Raw Periodogram',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Box-Cox transformation parameter (lambda)',header=TRUE) a<-table.element(a,par1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degree of non-seasonal differencing (d)',header=TRUE) a<-table.element(a,par2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degree of seasonal differencing (D)',header=TRUE) a<-table.element(a,par3) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Seasonal Period (s)',header=TRUE) a<-table.element(a,par4) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Frequency (Period)',header=TRUE) a<-table.element(a,'Spectrum',header=TRUE) a<-table.row.end(a) for (i in 1:length(r$freq)) { a<-table.row.start(a) mylab <- round(r$freq[i],4) mylab <- paste(mylab,' (',sep='') mylab <- paste(mylab,round(1/r$freq[i],4),sep='') mylab <- paste(mylab,')',sep='') a<-table.element(a,mylab,header=TRUE) a<-table.element(a,round(r$spec[i],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation