Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
2280 3640 3950 3860 3500 4740 3690 4810 6150 4530 4760 4670 3510 2990 3240 2700 2610 3280 3170 3440 4710 4320 3650 3340 3050 2960 2810 2670 2440 2580 2520 2860 3500 3460 3310 3050 2730 2760 2800 2490 2310 2350 2370 2560 2740 2830 3010 2500 2630 2270 2410 2210 2330 2690 3150 2330 2260 2330 2240 2230 2270 2220 2290 2240 2110 2240 2230 2320 2320 2540 2530 2400 2470 2290 2110 2050 2170 2070 2330 2190 2260 2300 2220 2220 2380 2280 2150 2190 2080 2120 2140 2130 2210 2210 2190 2160 2290 2270 2200 2120 2050 2080 2180 2070 2170 2240 2320 2250
Box-Cox transformation parameter
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree (d) of non-seasonal differencing
0
0
1
2
Degree (D) of seasonal differencing
0
0
1
2
Seasonal Period
1
1
2
3
4
12
Chart options
R Code
par1 <- as.numeric(par1) par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) if (par1 == 0) { x <- log(x) } else { x <- (x ^ par1 - 1) / par1 } if (par2 > 0) x <- diff(x,lag=1,difference=par2) if (par3 > 0) x <- diff(x,lag=par4,difference=par3) bitmap(file='test1.png') r <- spectrum(x,main='Raw Periodogram') dev.off() bitmap(file='test2.png') cpgram(x,main='Cumulative Periodogram') dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Raw Periodogram',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Box-Cox transformation parameter (lambda)',header=TRUE) a<-table.element(a,par1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degree of non-seasonal differencing (d)',header=TRUE) a<-table.element(a,par2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degree of seasonal differencing (D)',header=TRUE) a<-table.element(a,par3) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Seasonal Period (s)',header=TRUE) a<-table.element(a,par4) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Frequency (Period)',header=TRUE) a<-table.element(a,'Spectrum',header=TRUE) a<-table.row.end(a) for (i in 1:length(r$freq)) { a<-table.row.start(a) mylab <- round(r$freq[i],4) mylab <- paste(mylab,' (',sep='') mylab <- paste(mylab,round(1/r$freq[i],4),sep='') mylab <- paste(mylab,')',sep='') a<-table.element(a,mylab,header=TRUE) a<-table.element(a,round(r$spec[i],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation