Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
6600 6800 7500 7500 7400 7600 7300 7900 7100 7700 6500 5000 6200 7000 7400 7200 6900 7400 6400 5500 6600 7000 6200 5100 5600 6400 7200 7100 7000 7300 7600 7600 6700 6800 5900 5000 5600 5600 7100 7000 6600 7200 7200 7200 6200 6500 5800 4900 5800 6800 7100 6900 6800 7200 7200 7400 6400 6700 6200 5000 5600 6700 7000 6800 6900 7100 7300 7300 6600 6800 5900 4900 5500 6300 7100 6700 6700 7100 7300 7300 6200 6500 5800 4700 5500 6500 6800 6600 6300 6700 7200 7200 5900 6100 5500 4700 5400 6400 7500 6900 6400 6700 7100 7100 4000 6300 5400 4600 5400 6000 7200 6800 6400 7100 7500 7400 6400 6600 5600 4800 5400 6600
Sample Range:
(leave blank to include all observations)
From:
To:
Testing Period
(?)
12
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Box-Cox lambda transformation parameter (lambda)
2.0
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
0
0
1
2
Degree of seasonal differencing (D)
1
0
1
Seasonal period (s)
1
1
2
3
4
6
12
AR(p) order
2
0
1
2
3
MA(q) order
1
0
1
2
SAR(P) order
1
0
1
2
SMA(Q) order
1
0
1
Include mean?
FALSE
FALSE
TRUE
Chart options
R Code
par10 <- 'FALSE' par9 <- '1' par8 <- '1' par7 <- '1' par6 <- '2' par5 <- '1' par4 <- '1' par3 <- '0' par2 <- '2.0' par1 <- '0' par1 <- as.numeric(par1) #cut off periods par2 <- as.numeric(par2) #lambda par3 <- as.numeric(par3) #degree of non-seasonal differencing par4 <- as.numeric(par4) #degree of seasonal differencing par5 <- as.numeric(par5) #seasonal period par6 <- as.numeric(par6) #p par7 <- as.numeric(par7) #q par8 <- as.numeric(par8) #P par9 <- as.numeric(par9) #Q if (par10 == 'TRUE') par10 <- TRUE if (par10 == 'FALSE') par10 <- FALSE if (par2 == 0) x <- log(x) if (par2 != 0) x <- x^par2 lx <- length(x) first <- lx - 2*par1 nx <- lx - par1 nx1 <- nx + 1 fx <- lx - nx if (fx < 1) { fx <- par5*2 nx1 <- lx + fx - 1 first <- lx - 2*fx } first <- 1 if (fx < 3) fx <- round(lx/10,0) (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) (forecast <- predict(arima.out,fx)) (lb <- forecast$pred - 1.96 * forecast$se) (ub <- forecast$pred + 1.96 * forecast$se) if (par2 == 0) { x <- exp(x) forecast$pred <- exp(forecast$pred) lb <- exp(lb) ub <- exp(ub) } if (par2 != 0) { x <- x^(1/par2) forecast$pred <- forecast$pred^(1/par2) lb <- lb^(1/par2) ub <- ub^(1/par2) } if (par2 < 0) { olb <- lb lb <- ub ub <- olb } (actandfor <- c(x[1:nx], forecast$pred)) (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) bitmap(file='test1.png') opar <- par(mar=c(4,4,2,2),las=1) ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) plot(x,ylim=ylim,type='n',xlim=c(first,lx)) usr <- par('usr') rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') abline(h= (-3:3)*2 , col ='gray', lty =3) polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) lines(nx1:lx, lb , lty=2) lines(nx1:lx, ub , lty=2) lines(x, lwd=2) lines(nx1:lx, forecast$pred , lwd=2 , col ='white') box() par(opar) dev.off() prob.dec <- array(NA, dim=fx) prob.sdec <- array(NA, dim=fx) prob.ldec <- array(NA, dim=fx) prob.pval <- array(NA, dim=fx) perf.pe <- array(0, dim=fx) perf.spe <- array(0, dim=fx) perf.scalederr <- array(0, dim=fx) perf.mase <- array(0, dim=fx) perf.mase1 <- array(0, dim=fx) perf.mape <- array(0, dim=fx) perf.smape <- array(0, dim=fx) perf.mape1 <- array(0, dim=fx) perf.smape1 <- array(0,dim=fx) perf.se <- array(0, dim=fx) perf.mse <- array(0, dim=fx) perf.mse1 <- array(0, dim=fx) perf.rmse <- array(0, dim=fx) perf.scaleddenom <- 0 for (i in 2:fx) { perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1]) } perf.scaleddenom = perf.scaleddenom / (fx-1) for (i in 1:fx) { locSD <- (ub[i] - forecast$pred[i]) / 1.96 perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i] perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i]) perf.se[i] = (x[nx+i] - forecast$pred[i])^2 prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) } perf.mape[1] = abs(perf.pe[1]) perf.smape[1] = abs(perf.spe[1]) perf.mape1[1] = perf.mape[1] perf.smape1[1] = perf.smape[1] perf.mse[1] = perf.se[1] perf.mase[1] = abs(perf.scalederr[1]) perf.mase1[1] = perf.mase[1] for (i in 2:fx) { perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) perf.mape1[i] = perf.mape[i] / i perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i]) perf.smape1[i] = perf.smape[i] / i perf.mse[i] = perf.mse[i-1] + perf.se[i] perf.mse1[i] = perf.mse[i] / i perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i]) perf.mase1[i] = perf.mase[i] / i } perf.rmse = sqrt(perf.mse1) bitmap(file='test2.png') plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) dum <- forecast$pred dum[1:par1] <- x[(nx+1):lx] lines(dum, lty=1) lines(ub,lty=3) lines(lb,lty=3) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'time',1,header=TRUE) a<-table.element(a,'Y[t]',1,header=TRUE) a<-table.element(a,'F[t]',1,header=TRUE) a<-table.element(a,'95% LB',1,header=TRUE) a<-table.element(a,'95% UB',1,header=TRUE) a<-table.element(a,'p-value<br />(H0: Y[t] = F[t])',1,header=TRUE) a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) mylab <- paste('P(F[t]>Y[',nx,sep='') mylab <- paste(mylab,'])',sep='') a<-table.element(a,mylab,1,header=TRUE) a<-table.row.end(a) for (i in (nx-par5):nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.row.end(a) } for (i in 1:fx) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,round(x[nx+i],4)) a<-table.element(a,round(forecast$pred[i],4)) a<-table.element(a,round(lb[i],4)) a<-table.element(a,round(ub[i],4)) a<-table.element(a,round((1-prob.pval[i]),4)) a<-table.element(a,round((1-prob.dec[i]),4)) a<-table.element(a,round((1-prob.sdec[i]),4)) a<-table.element(a,round((1-prob.ldec[i]),4)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'time',1,header=TRUE) a<-table.element(a,'% S.E.',1,header=TRUE) a<-table.element(a,'PE',1,header=TRUE) a<-table.element(a,'MAPE',1,header=TRUE) a<-table.element(a,'sMAPE',1,header=TRUE) a<-table.element(a,'Sq.E',1,header=TRUE) a<-table.element(a,'MSE',1,header=TRUE) a<-table.element(a,'RMSE',1,header=TRUE) a<-table.element(a,'ScaledE',1,header=TRUE) a<-table.element(a,'MASE',1,header=TRUE) a<-table.row.end(a) for (i in 1:fx) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,round(perc.se[i],4)) a<-table.element(a,round(perf.pe[i],4)) a<-table.element(a,round(perf.mape1[i],4)) a<-table.element(a,round(perf.smape1[i],4)) a<-table.element(a,round(perf.se[i],4)) a<-table.element(a,round(perf.mse1[i],4)) a<-table.element(a,round(perf.rmse[i],4)) a<-table.element(a,round(perf.scalederr[i],4)) a<-table.element(a,round(perf.mase1[i],4)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation