Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
3996.1 3984.2 4049 4032.8 4074.1 4114.4 4091.4 4166.6 4152.5 4112.7 4145.9 4174.4 4183.6 4172.5 4280.3 4327.4 4251.2 4256.5 4285.7 4257.4 4231.9 4274.3 4248.3 4310.5 4301.9 4336.5 4385.1 4310.4 4378.8 4338 4304.2 4266.9 4230.1 4230.6 4353.2 4371.2 4393.2 4250.2 4129.5 4124.9 4177.1 4156.9 4111.9 4167.4 4190.7 4165 4209.8 4250 4224.8 4322.7 4311.7 4373.8 4358.9 4441.2 4538.9 4444.8 4537.8 4490.2 4517.3 4561.9 4567 4588.3 4656.8 4677.7 4684.2 4752.8 4738.9 4785.6 4742.7 4711.4 4758.1 4800.5 4877.3 4885 4941.4 5009.4 5017.5 4984.1 4903.9 4968.6 4937.3 4987.1 5001.9 5094.6 5177.8 5206.1 5253.1 5284.3 5266.8 5225.1 5272.8 5529.8 5535.2 5715.9 5672.2 5475.7 5435.3 5458.5 5373.3 5395.3 5515 5410.9 5400.2 5424.2 5388.5 5482.1 5506.9 5377.2 5353.5 5401.1 5438.1 5510.2 5499 5606.5 5644 5440.7
Sample Range:
(leave blank to include all observations)
From:
To:
Number of time lags
Default
Default
5
6
7
8
9
10
11
12
24
36
48
60
Box-Cox transformation parameter (Lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
0
0
1
2
Degree of seasonal differencing (D)
0
0
1
2
Seasonality
12
12
1
2
3
4
6
12
CI type
White Noise
White Noise
MA
Confidence Interval
Use logarithms with this base
(overrules the Box-Cox lambda parameter)
(?)
Chart options
R Code
par8 <- '' par7 <- '0.95' par6 <- 'White Noise' par5 <- '12' par4 <- '0' par3 <- '1' par2 <- '1' par1 <- 'Default' if (par1 == 'Default') { par1 = 10*log10(length(x)) } else { par1 <- as.numeric(par1) } par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) par5 <- as.numeric(par5) if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma' par7 <- as.numeric(par7) if (par8 != '') par8 <- as.numeric(par8) x <- na.omit(x) ox <- x if (par8 == '') { if (par2 == 0) { x <- log(x) } else { x <- (x ^ par2 - 1) / par2 } } else { x <- log(x,base=par8) } if (par3 > 0) x <- diff(x,lag=1,difference=par3) if (par4 > 0) x <- diff(x,lag=par5,difference=par4) bitmap(file='picts.png') op <- par(mfrow=c(2,1)) plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value') if (par8=='') { mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } else { mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } plot(x,type='l', main=mytitle,xlab='time',ylab='value') par(op) dev.off() bitmap(file='pic1.png') racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub) dev.off() bitmap(file='pic2.png') rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub) dev.off() (myacf <- c(racf$acf)) (mypacf <- c(rpacf$acf)) lengthx <- length(x) sqrtn <- sqrt(lengthx) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,'ACF(k)',header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 2:(par1+1)) { a<-table.row.start(a) a<-table.element(a,i-1,header=TRUE) a<-table.element(a,round(myacf[i],6)) mytstat <- myacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Partial Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,'PACF(k)',header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 1:par1) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,round(mypacf[i],6)) mytstat <- mypacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation