Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
97.7 88.9 96.5 89.5 85.4 84.3 83.7 86.2 90.7 95.7 95.6 97 97.2 86.6 88.4 81.4 86.9 84.9 83.7 86.8 88.3 92.5 94.7 94.5 98.7 88.6 95.2 91.3 91.7 89.3 88.7 91.2 88.6 94.6 96 94.3 102 93.4 96.7 93.7 91.6 89.6 92.9 94.1 92 97.5 92.7 100.7 105.9 95.3 99.8 91.3 90.8 87.1 91.4 86.1 87.1 92.6 96.6 105.3 102.4 98.2 98.6 92.6 87.9 84.1 86.7 84.4 86 90.4 92.9 105.8 106 99.1 99.9 88.1 87.8 87.1 85.9 86.5 84.1 92.1 93.3 98.9 103 98.4 100.7 92.3 89 88.9 85.5 90.1 87 97.1 101.5 103 106.1 96.1 94.2 89.1 85.2 86.5 88 88.4 87.9 95.7 94.8 105.2 108.7 96.1 98.3 88.6 90.8 88.1 91.9 98.5 98.6 100.3 98.7 110.7 115.4 105.4 108 94.5 96.5 91 94.1 96.4 93.1 97.5 102.5 105.7 109.1 97.2 100.3 91.3 94.3 89.5 89.3 93.4 91.9 92.9 93.7 100.1 105.5 110.5 89.5 90.4 89.9 84.6 86.2 83.4 82.9 81.8 87.6 94.6 99.6 96.7 99.8 83.8 82.4 86.8 91 85.3 83.6 94 100.3 107.1 100.7 95.5 92.9 79.2 82 79.3 81.5 76 73.1 80.4 82.1 90.5 98.1 89.5 86.5 77 74.7 73.4 72.5 69.3 75.2 83.5 90.5 92.2 110.5 101.8 107.4 95.5 84.5 81.1 86.2 91.5 84.7 92.2 99.2 104.5 113 100.4 101 84.8 86.5 91.7 94.8 95
Include mean?
1
FALSE
TRUE
Box-Cox lambda transformation parameter (lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
0
0
1
2
Degree of seasonal differencing (D)
1
0
1
Seasonal Period (s)
1
2
3
4
6
12
Maximum AR(p) order
0
1
2
3
Maximum MA(q) order
0
1
Maximum SAR(P) order
0
1
2
Maximum SMA(Q) order
0
1
Chart options
R Code
library(lattice) if (par1 == 'TRUE') par1 <- TRUE if (par1 == 'FALSE') par1 <- FALSE par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter par3 <- as.numeric(par3) #degree of non-seasonal differencing par4 <- as.numeric(par4) #degree of seasonal differencing par5 <- as.numeric(par5) #seasonal period par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial armaGR <- function(arima.out, names, n){ try1 <- arima.out$coef try2 <- sqrt(diag(arima.out$var.coef)) try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) try.data.frame[,1] <- try1 for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) vector <- rep(NA,length(names)) vector[is.na(try.data.frame[,4])] <- 0 maxi <- which.max(try.data.frame[,4]) continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 vector[maxi] <- 0 list(summary=try.data.frame,next.vector=vector,continue=continue) } arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] coeff <- matrix(NA, nrow=nrc*2, ncol=nrc) pval <- matrix(NA, nrow=nrc*2, ncol=nrc) mylist <- rep(list(NULL), nrc) names <- NULL if(order[1] > 0) names <- paste('ar',1:order[1],sep='') if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') mylist[[1]] <- arima.out last.arma <- armaGR(arima.out, names, length(series)) mystop <- FALSE i <- 1 coeff[i,] <- last.arma[[1]][,1] pval [i,] <- last.arma[[1]][,4] i <- 2 aic <- arima.out$aic while(!mystop){ mylist[[i]] <- arima.out arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) aic <- c(aic, arima.out$aic) last.arma <- armaGR(arima.out, names, length(series)) mystop <- !last.arma$continue coeff[i,] <- last.arma[[1]][,1] pval [i,] <- last.arma[[1]][,4] i <- i+1 } list(coeff, pval, mylist, aic=aic) } arimaSelectplot <- function(arimaSelect.out,noms,choix){ noms <- names(arimaSelect.out[[3]][[1]]$coef) coeff <- arimaSelect.out[[1]] k <- min(which(is.na(coeff[,1])))-1 coeff <- coeff[1:k,] pval <- arimaSelect.out[[2]][1:k,] aic <- arimaSelect.out$aic[1:k] coeff[coeff==0] <- NA n <- ncol(coeff) if(missing(choix)) choix <- k layout(matrix(c(1,1,1,2, 3,3,3,2, 3,3,3,4, 5,6,7,7),nr=4), widths=c(10,35,45,15), heights=c(30,30,15,15)) couleurs <- rainbow(75)[1:50]#(50) ticks <- pretty(coeff) par(mar=c(1,1,3,1)) plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) title('aic',line=2) par(mar=c(3,0,0,0)) plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), ytop = rep(1,50), ybottom= rep(0,50),col=couleurs,border=NA) axis(1,ticks) rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) par(mar=c(1,1,3,1)) image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { if(pval[j,i]<.01) symb = 'green' else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' else symb = 'black' polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), col=symb) if(j==choix) { rect(xleft=i-.5, xright=i+.5, ybottom=k-j+1.5, ytop=k-j+.5, lwd=4) text(i, k-j+1, round(coeff[j,i],2), cex=1.2, font=2) } else{ rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) } } axis(3,1:n,noms) par(mar=c(0.5,0,0,0.5)) plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) cols <- c('green','orange','red','black') niv <- c('0','0.01','0.05','0.1') for(i in 0:3){ polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), c(.4 ,.7 , .4 , .4), col=cols[i+1]) text(2*i,0.5,niv[i+1],cex=1.5) } text(8,.5,1,cex=1.5) text(4,0,'p-value',cex=2) box() residus <- arimaSelect.out[[3]][[choix]]$res par(mar=c(1,2,4,1)) acf(residus,main='') title('acf',line=.5) par(mar=c(1,2,4,1)) pacf(residus,main='') title('pacf',line=.5) par(mar=c(2,2,4,1)) qqnorm(residus,main='') title('qq-norm',line=.5) qqline(residus) residus } if (par2 == 0) x <- log(x) if (par2 != 0) x <- x^par2 (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) bitmap(file='test1.png') resid <- arimaSelectplot(selection) dev.off() resid bitmap(file='test2.png') acf(resid,length(resid)/2, main='Residual Autocorrelation Function') dev.off() bitmap(file='test3.png') pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') dev.off() bitmap(file='test4.png') cpgram(resid, main='Residual Cumulative Periodogram') dev.off() bitmap(file='test5.png') hist(resid, main='Residual Histogram', xlab='values of Residuals') dev.off() bitmap(file='test6.png') densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test7.png') qqnorm(resid, main='Residual Normal Q-Q Plot') qqline(resid) dev.off() ncols <- length(selection[[1]][1,]) nrows <- length(selection[[2]][,1])-1 load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Iteration', header=TRUE) for (i in 1:ncols) { a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) } a<-table.row.end(a) for (j in 1:nrows) { a<-table.row.start(a) mydum <- 'Estimates (' mydum <- paste(mydum,j) mydum <- paste(mydum,')') a<-table.element(a,mydum, header=TRUE) for (i in 1:ncols) { a<-table.element(a,round(selection[[1]][j,i],4)) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'(p-val)', header=TRUE) for (i in 1:ncols) { mydum <- '(' mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') mydum <- paste(mydum,')') a<-table.element(a,mydum) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a <-table.start() a <- table.row.start(a) a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'Description',1,TRUE) a <- table.element(a,'Link',1,TRUE) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Histogram',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Central Tendency',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'QQ Plot',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Kernel Density Plot',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Spectral Analysis',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'Summary Statistics',1,header=TRUE) a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1) a <- table.row.end(a) a<-table.end(a) table.save(a,file='mytable7.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation