Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
'1' 'Trt' 'NoCue' 'Neut' 433.5 '1' 'Trt' 'NoCue' 'Cong' 423.9 '1' 'Trt' 'NoCue' 'Inc' 490.9 '1' 'Trt' 'Cent' 'Neut' 385.2 '1' 'Trt' 'Cent' 'Cong' 368.6 '1' 'Trt' 'Cent' 'Inc' 473.4 '1' 'Trt' 'Double' 'Neut' 378.9 '1' 'Trt' 'Double' 'Cong' 378.9 '1' 'Trt' 'Double' 'Inc' 455.4 '1' 'Trt' 'Spatial' 'Neut' 328.1 '1' 'Trt' 'Spatial' 'Cong' 350.2 '1' 'Trt' 'Spatial' 'Inc' 407.2 '2' 'Trt' 'NoCue' 'Neut' 436.4 '2' 'Trt' 'NoCue' 'Cong' 441.9 '2' 'Trt' 'NoCue' 'Inc' 483.3 '2' 'Trt' 'Cent' 'Neut' 374.2 '2' 'Trt' 'Cent' 'Cong' 389.8 '2' 'Trt' 'Cent' 'Inc' 455.7 '2' 'Trt' 'Double' 'Neut' 357.0 '2' 'Trt' 'Double' 'Cong' 384.2 '2' 'Trt' 'Double' 'Inc' 433.0 '2' 'Trt' 'Spatial' 'Neut' 339.4 '2' 'Trt' 'Spatial' 'Cong' 337.6 '2' 'Trt' 'Spatial' 'Inc' 421.0 '3' 'Trt' 'NoCue' 'Neut' 428.7 '3' 'Trt' 'NoCue' 'Cong' 428.1 '3' 'Trt' 'NoCue' 'Inc' 503.3 '3' 'Trt' 'Cent' 'Neut' 371.2 '3' 'Trt' 'Cent' 'Cong' 368.0 '3' 'Trt' 'Cent' 'Inc' 436.5 '3' 'Trt' 'Double' 'Neut' 392.3 '3' 'Trt' 'Double' 'Cong' 356.3 '3' 'Trt' 'Double' 'Inc' 432.7 '3' 'Trt' 'Spatial' 'Neut' 331.3 '3' 'Trt' 'Spatial' 'Cong' 334.6 '3' 'Trt' 'Spatial' 'Inc' 431.4 '4' 'Trt' 'NoCue' 'Neut' 415.5 '4' 'Trt' 'NoCue' 'Cong' 433.3 '4' 'Trt' 'NoCue' 'Inc' 498.5 '4' 'Trt' 'Cent' 'Neut' 384.8 '4' 'Trt' 'Cent' 'Cong' 383.2 '4' 'Trt' 'Cent' 'Inc' 438.5 '4' 'Trt' 'Double' 'Neut' 370.3 '4' 'Trt' 'Double' 'Cong' 399.4 '4' 'Trt' 'Double' 'Inc' 445.9 '4' 'Trt' 'Spatial' 'Neut' 320.7 '4' 'Trt' 'Spatial' 'Cong' 342.8 '4' 'Trt' 'Spatial' 'Inc' 407.0 '5' 'Trt' 'NoCue' 'Neut' 429.1 '5' 'Trt' 'NoCue' 'Cong' 436.9 '5' 'Trt' 'NoCue' 'Inc' 499.0 '5' 'Trt' 'Cent' 'Neut' 378.1 '5' 'Trt' 'Cent' 'Cong' 394.6 '5' 'Trt' 'Cent' 'Inc' 471.4 '5' 'Trt' 'Double' 'Neut' 370.6 '5' 'Trt' 'Double' 'Cong' 370.7 '5' 'Trt' 'Double' 'Inc' 447.1 '5' 'Trt' 'Spatial' 'Neut' 332.5 '5' 'Trt' 'Spatial' 'Cong' 329.9 '5' 'Trt' 'Spatial' 'Inc' 418.3 '6' 'Trt' 'NoCue' 'Neut' 435.3 '6' 'Trt' 'NoCue' 'Cong' 422.7 '6' 'Trt' 'NoCue' 'Inc' 480.0 '6' 'Trt' 'Cent' 'Neut' 390.7 '6' 'Trt' 'Cent' 'Cong' 366.9 '6' 'Trt' 'Cent' 'Inc' 461.5 '6' 'Trt' 'Double' 'Neut' 354.1 '6' 'Trt' 'Double' 'Cong' 385.6 '6' 'Trt' 'Double' 'Inc' 435.4 '6' 'Trt' 'Spatial' 'Neut' 336.3 '6' 'Trt' 'Spatial' 'Cong' 335.0 '6' 'Trt' 'Spatial' 'Inc' 399.6 '7' 'Trt' 'NoCue' 'Neut' 435.4 '7' 'Trt' 'NoCue' 'Cong' 412.3 '7' 'Trt' 'NoCue' 'Inc' 484.9 '7' 'Trt' 'Cent' 'Neut' 387.8 '7' 'Trt' 'Cent' 'Cong' 380.5 '7' 'Trt' 'Cent' 'Inc' 443.4 '7' 'Trt' 'Double' 'Neut' 361.9 '7' 'Trt' 'Double' 'Cong' 346.4 '7' 'Trt' 'Double' 'Inc' 452.1 '7' 'Trt' 'Spatial' 'Neut' 351.1 '7' 'Trt' 'Spatial' 'Cong' 345.6 '7' 'Trt' 'Spatial' 'Inc' 424.7 '8' 'Trt' 'NoCue' 'Neut' 402.9 '8' 'Trt' 'NoCue' 'Cong' 412.7 '8' 'Trt' 'NoCue' 'Inc' 502.4 '8' 'Trt' 'Cent' 'Neut' 387.8 '8' 'Trt' 'Cent' 'Cong' 358.2 '8' 'Trt' 'Cent' 'Inc' 437.8 '8' 'Trt' 'Double' 'Neut' 357.4 '8' 'Trt' 'Double' 'Cong' 401.8 '8' 'Trt' 'Double' 'Inc' 459.5 '8' 'Trt' 'Spatial' 'Neut' 360.1 '8' 'Trt' 'Spatial' 'Cong' 335.6 '8' 'Trt' 'Spatial' 'Inc' 405.1 '9' 'Trt' 'NoCue' 'Neut' 419.2 '9' 'Trt' 'NoCue' 'Cong' 420.1 '9' 'Trt' 'NoCue' 'Inc' 500.0 '9' 'Trt' 'Cent' 'Neut' 386.1 '9' 'Trt' 'Cent' 'Cong' 381.4 '9' 'Trt' 'Cent' 'Inc' 460.0 '9' 'Trt' 'Double' 'Neut' 370.2 '9' 'Trt' 'Double' 'Cong' 369.4 '9' 'Trt' 'Double' 'Inc' 445.4 '9' 'Trt' 'Spatial' 'Neut' 351.2 '9' 'Trt' 'Spatial' 'Cong' 336.6 '9' 'Trt' 'Spatial' 'Inc' 422.3 '10' 'Trt' 'NoCue' 'Neut' 441.6 '10' 'Trt' 'NoCue' 'Cong' 432.2 '10' 'Trt' 'NoCue' 'Inc' 516.9 '10' 'Trt' 'Cent' 'Neut' 382.5 '10' 'Trt' 'Cent' 'Cong' 376.9 '10' 'Trt' 'Cent' 'Inc' 442.9 '10' 'Trt' 'Double' 'Neut' 385.6 '10' 'Trt' 'Double' 'Cong' 385.9 '10' 'Trt' 'Double' 'Inc' 457.8 '10' 'Trt' 'Spatial' 'Neut' 342.2 '10' 'Trt' 'Spatial' 'Cong' 331.5 '10' 'Trt' 'Spatial' 'Inc' 408.1 '11' 'Ctrl' 'NoCue' 'Neut' 446.7 '11' 'Ctrl' 'NoCue' 'Cong' 433.8 '11' 'Ctrl' 'NoCue' 'Inc' 517.3 '11' 'Ctrl' 'Cent' 'Neut' 380.3 '11' 'Ctrl' 'Cent' 'Cong' 371.6 '11' 'Ctrl' 'Cent' 'Inc' 493.7 '11' 'Ctrl' 'Double' 'Neut' 390.9 '11' 'Ctrl' 'Double' 'Cong' 394.2 '11' 'Ctrl' 'Double' 'Inc' 482.1 '11' 'Ctrl' 'Spatial' 'Neut' 345.2 '11' 'Ctrl' 'Spatial' 'Cong' 330.7 '11' 'Ctrl' 'Spatial' 'Inc' 391.5 '12' 'Ctrl' 'NoCue' 'Neut' 420.7 '12' 'Ctrl' 'NoCue' 'Cong' 442.7 '12' 'Ctrl' 'NoCue' 'Inc' 513.3 '12' 'Ctrl' 'Cent' 'Neut' 374.7 '12' 'Ctrl' 'Cent' 'Cong' 373.0 '12' 'Ctrl' 'Cent' 'Inc' 486.7 '12' 'Ctrl' 'Double' 'Neut' 380.0 '12' 'Ctrl' 'Double' 'Cong' 374.9 '12' 'Ctrl' 'Double' 'Inc' 495.7 '12' 'Ctrl' 'Spatial' 'Neut' 352.6 '12' 'Ctrl' 'Spatial' 'Cong' 347.6 '12' 'Ctrl' 'Spatial' 'Inc' 424.4 '13' 'Ctrl' 'NoCue' 'Neut' 422.1 '13' 'Ctrl' 'NoCue' 'Cong' 424.2 '13' 'Ctrl' 'NoCue' 'Inc' 503.6 '13' 'Ctrl' 'Cent' 'Neut' 364.8 '13' 'Ctrl' 'Cent' 'Cong' 364.3 '13' 'Ctrl' 'Cent' 'Inc' 474.6 '13' 'Ctrl' 'Double' 'Neut' 383.8 '13' 'Ctrl' 'Double' 'Cong' 363.6 '13' 'Ctrl' 'Double' 'Inc' 477.1 '13' 'Ctrl' 'Spatial' 'Neut' 338.0 '13' 'Ctrl' 'Spatial' 'Cong' 332.8 '13' 'Ctrl' 'Spatial' 'Inc' 420.3 '14' 'Ctrl' 'NoCue' 'Neut' 431.7 '14' 'Ctrl' 'NoCue' 'Cong' 436.4 '14' 'Ctrl' 'NoCue' 'Inc' 481.9 '14' 'Ctrl' 'Cent' 'Neut' 376.7 '14' 'Ctrl' 'Cent' 'Cong' 388.7 '14' 'Ctrl' 'Cent' 'Inc' 484.4 '14' 'Ctrl' 'Double' 'Neut' 383.4 '14' 'Ctrl' 'Double' 'Cong' 363.5 '14' 'Ctrl' 'Double' 'Inc' 467.4 '14' 'Ctrl' 'Spatial' 'Neut' 315.9 '14' 'Ctrl' 'Spatial' 'Cong' 354.7 '14' 'Ctrl' 'Spatial' 'Inc' 408.6 '15' 'Ctrl' 'NoCue' 'Neut' 430.9 '15' 'Ctrl' 'NoCue' 'Cong' 446.8 '15' 'Ctrl' 'NoCue' 'Inc' 505.1 '15' 'Ctrl' 'Cent' 'Neut' 372.7 '15' 'Ctrl' 'Cent' 'Cong' 382.8 '15' 'Ctrl' 'Cent' 'Inc' 483.5 '15' 'Ctrl' 'Double' 'Neut' 369.3 '15' 'Ctrl' 'Double' 'Cong' 378.1 '15' 'Ctrl' 'Double' 'Inc' 461.1 '15' 'Ctrl' 'Spatial' 'Neut' 342.6 '15' 'Ctrl' 'Spatial' 'Cong' 336.2 '15' 'Ctrl' 'Spatial' 'Inc' 421.7 '16' 'Ctrl' 'NoCue' 'Neut' 425.6 '16' 'Ctrl' 'NoCue' 'Cong' 417.5 '16' 'Ctrl' 'NoCue' 'Inc' 495.2 '16' 'Ctrl' 'Cent' 'Neut' 373.9 '16' 'Ctrl' 'Cent' 'Cong' 378.6 '16' 'Ctrl' 'Cent' 'Inc' 490.9 '16' 'Ctrl' 'Double' 'Neut' 381.9 '16' 'Ctrl' 'Double' 'Cong' 358.5 '16' 'Ctrl' 'Double' 'Inc' 464.4 '16' 'Ctrl' 'Spatial' 'Neut' 340.3 '16' 'Ctrl' 'Spatial' 'Cong' 351.1 '16' 'Ctrl' 'Spatial' 'Inc' 408.4 '17' 'Ctrl' 'NoCue' 'Neut' 421.6 '17' 'Ctrl' 'NoCue' 'Cong' 432.6 '17' 'Ctrl' 'NoCue' 'Inc' 502.8 '17' 'Ctrl' 'Cent' 'Neut' 386.0 '17' 'Ctrl' 'Cent' 'Cong' 389.3 '17' 'Ctrl' 'Cent' 'Inc' 487.0 '17' 'Ctrl' 'Double' 'Neut' 369.5 '17' 'Ctrl' 'Double' 'Cong' 368.7 '17' 'Ctrl' 'Double' 'Inc' 482.0 '17' 'Ctrl' 'Spatial' 'Neut' 350.8 '17' 'Ctrl' 'Spatial' 'Cong' 333.9 '17' 'Ctrl' 'Spatial' 'Inc' 421.7 '18' 'Ctrl' 'NoCue' 'Neut' 432.5 '18' 'Ctrl' 'NoCue' 'Cong' 413.6 '18' 'Ctrl' 'NoCue' 'Inc' 484.4 '18' 'Ctrl' 'Cent' 'Neut' 388.4 '18' 'Ctrl' 'Cent' 'Cong' 374.6 '18' 'Ctrl' 'Cent' 'Inc' 475.4 '18' 'Ctrl' 'Double' 'Neut' 380.8 '18' 'Ctrl' 'Double' 'Cong' 372.6 '18' 'Ctrl' 'Double' 'Inc' 464.2 '18' 'Ctrl' 'Spatial' 'Neut' 337.4 '18' 'Ctrl' 'Spatial' 'Cong' 338.3 '18' 'Ctrl' 'Spatial' 'Inc' 407.7 '19' 'Ctrl' 'NoCue' 'Neut' 436.6 '19' 'Ctrl' 'NoCue' 'Cong' 421.7 '19' 'Ctrl' 'NoCue' 'Inc' 494.7 '19' 'Ctrl' 'Cent' 'Neut' 393.5 '19' 'Ctrl' 'Cent' 'Cong' 393.9 '19' 'Ctrl' 'Cent' 'Inc' 482.2 '19' 'Ctrl' 'Double' 'Neut' 368.6 '19' 'Ctrl' 'Double' 'Cong' 384.2 '19' 'Ctrl' 'Double' 'Inc' 477.8 '19' 'Ctrl' 'Spatial' 'Neut' 344.0 '19' 'Ctrl' 'Spatial' 'Cong' 339.6 '19' 'Ctrl' 'Spatial' 'Inc' 392.7 '20' 'Ctrl' 'NoCue' 'Neut' 412.5 '20' 'Ctrl' 'NoCue' 'Cong' 424.3 '20' 'Ctrl' 'NoCue' 'Inc' 488.2 '20' 'Ctrl' 'Cent' 'Neut' 372.9 '20' 'Ctrl' 'Cent' 'Cong' 393.0 '20' 'Ctrl' 'Cent' 'Inc' 475.3 '20' 'Ctrl' 'Double' 'Neut' 384.2 '20' 'Ctrl' 'Double' 'Cong' 366.5 '20' 'Ctrl' 'Double' 'Inc' 460.0 '20' 'Ctrl' 'Spatial' 'Neut' 338.1 '20' 'Ctrl' 'Spatial' 'Cong' 372.3 '20' 'Ctrl' 'Spatial' 'Inc' 418.3
Names of X columns:
sid group cue flanker mean_rt
Response : Variable 1
Within Ss Factor : Variable 2
Within Ss Factor : Variable 3
Between Ss Factor : Variable 4
Subject Identifier Column : Variable 5
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par5 <- '1' par4 <- '2' par3 <- '4' par2 <- '3' par1 <- '5' cat1 <- as.numeric(par1) # cat2<- as.numeric(par2) # cat3 <- as.numeric(par3) cat4 <-as.numeric(par4) cat5 <-as.numeric(par5) x <- t(x) x1<-as.numeric(x[,cat1]) wf1<-as.character(x[,cat2]) wf2 <- as.character(x[,cat3]) bf1 <- as.character(x[,cat4]) sid<- as.character(x[,cat5]) # author of ez changed within subjects variable name from sid to wid xdf<-data.frame(x1,wf1, wf2, bf1, sid) (V1<-dimnames(y)[[1]][cat1]) (V2<-dimnames(y)[[1]][cat2]) (V3 <-dimnames(y)[[1]][cat3]) (V4 <-dimnames(y)[[1]][cat4]) (V5 <-dimnames(y)[[1]][cat5]) names(xdf)<-c(V1, V2, V3, V4, V5) library(ez) library(Cairo) (ezout <- ezANOVA(data=xdf, dv=.(mean_rt), wid=.(sid), within=.(cue, flanker), between=.(group) ) ) load(file='createtable') a<-table.start() nr <- nrow(ezout$ANOVA) nc <- ncol(ezout$ANOVA) a<-table.row.start(a) a<-table.element(a,'Repeated Measures ANOVA', nc+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'effect', 1,TRUE) a<-table.element(a,'Dfn',1,TRUE) a<-table.element(a,'DFd', 1,TRUE) a<-table.element(a, 'F', 1,TRUE) a<-table.element(a,'p', 1,TRUE) a<-table.element(a,'p<0.05', 1,TRUE) a<-table.element(a, 'ges', 1,TRUE) # generalized eta-sq - was partial eta-sq in earlier version a<-table.row.end(a) for ( i in 1:nr){ a<-table.row.start(a) a<-table.element(a,ezout$ANOVA$Effect[i], 1, TRUE) for(j in 2:nc){ if ( j != 6) # author of ez reduced number of columns in output from 8 a<-table.element(a,round(ezout$ANOVA[[j]][i], digits=3), 1, FALSE) else a<-table.element(a, ezout$ANOVA[[j]][i], 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() nr <- nrow(ezout$Mauchly) nc <- ncol(ezout$Mauchly) a<-table.row.start(a) a<-table.element(a,'Mauchlys Test for Sphericity', nc+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'effect', 1,TRUE) a<-table.element(a,'W',1,TRUE) a<-table.element(a,'p', 1,TRUE) a<-table.element(a,'p<0.05', 1,TRUE) a<-table.row.end(a) for ( i in 1:nr){ a<-table.row.start(a) a<-table.element(a,ezout$Mauchly$Effect[i], 1, TRUE) for(j in 2:nc){ if (j != 4) a<-table.element(a,round(ezout$Mauchly[[j]][i], digits = 3), 1, FALSE) else a<-table.element(a,ezout$Mauchly[[j]][i], 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() nr <- nrow(ezout$Spher) nc <- ncol(ezout$Sphe) a<-table.row.start(a) a<-table.element(a,'Sphericity Corrections', nc+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'effect', 1,TRUE) a<-table.element(a,'GGe',1,TRUE) a<-table.element(a,'p[GG]', 1,TRUE) a<-table.element(a,'p[GG]<0.05', 1,TRUE) a<-table.element(a,'HFe', 1,TRUE) a<-table.element(a,'p[HF]', 1,TRUE) a<-table.element(a,'p[HF]<0.05', 1,TRUE) a<-table.row.end(a) for ( i in 1:nr){ a<-table.row.start(a) a<-table.element(a,ezout$Spher$Effect[i], 1, TRUE) for(j in 2:nc){ if ( ! ((j == 4) | (j == 7)) ) a<-table.element(a,round(ezout$Spher[[j]][i], digits=3), 1, FALSE) else a<-table.element(a,ezout$Spher[[j]][i], 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') ezP.between<-ezPlot(data = xdf, dv = .(mean_rt), between = .(group), wid = .(sid), do_lines=FALSE, x_lab='group', y_lab='RT' , x=.(group)) bitmap(file = 'between.cairo') print(ezP.between) dev.off() ezstats_between<-ezStats(data = xdf, dv = .(mean_rt), between =.(group), wid = .(sid)) a<-table.start() nr <- nrow(ezstats_between) nc <- ncol(ezstats_between) a<-table.row.start(a) a<-table.element(a,'Between Effects Comparisons', nc+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) for(i in 1:nc){ a<-table.element(a, names(ezstats_between)[i], 1,TRUE) } a<-table.row.end(a) for ( i in 1:nr){ a<-table.row.start(a) a<-table.element(a,ezstats_between[[1]][i], 1, TRUE) for(j in 2:nc){ a<-table.element(a,ezstats_between[[j]][i], 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable3.tab') ezP.within<-ezPlot(data = xdf, dv = .(mean_rt), within = .(cue, flanker), wid = .(sid), do_lines=TRUE, x_lab='flanker', y_lab='RT' , x=.(flanker), split=.(cue), split_lab = 'cue') bitmap(file = 'within.cairo') print(ezP.within) dev.off() ezstats_within <- ezStats(data = xdf, dv = .(mean_rt), within = .(cue, flanker), wid = .(sid)) a<-table.start() nr <- nrow(ezstats_within) nc <- ncol(ezstats_within) a<-table.row.start(a) a<-table.element(a,'Within Effects Comparisons', nc+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) for(i in 1:nc){ a<-table.element(a, names(ezstats_within)[i], 1,TRUE) } a<-table.row.end(a) for ( i in 1:nr){ a<-table.row.start(a) a<-table.element(a,ezstats_within[[1]][i], 1, TRUE) for(j in 2:nc){ a<-table.element(a, ezstats_within[[j]][i], 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation