Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
100.00 105.26 106.58 101.32 98.68 100.00 102.63 102.63 102.63 98.68 98.68 93.42 98.68 98.68 100.00 101.32 101.32 103.95 106.58 107.89 107.89 107.89 103.95 96.05 90.79 86.84 88.16 90.79 92.11 93.42 94.74 93.42 90.79 92.11 89.47 84.21 88.16 86.84 84.21 82.89 81.58 85.53 89.47 89.47 84.21 80.26 76.32 80.26 94.74 96.05 90.79 80.26 76.32 81.58 93.42 101.32 103.95 101.32 97.37 98.68
Data Y:
100.00 106.73 104.81 96.15 88.46 88.46 91.35 92.31 91.35 87.50 85.58 86.54 97.12 99.04 98.08 92.31 88.46 89.42 90.38 90.38 88.46 86.54 86.54 86.54 94.23 96.15 94.23 89.42 86.54 86.54 87.50 87.50 87.50 88.46 84.62 79.81 80.77 77.88 74.04 75.96 75.96 76.92 75.96 73.08 68.27 65.38 62.50 66.35 78.85 83.65 79.81 75.96 72.12 75.00 79.81 80.77 78.85 74.04 69.23 70.19
Sample Range:
(leave blank to include all observations)
From:
To:
Chart options
Label y-axis:
Label x-axis:
R Code
n <- length(x) c <- array(NA,dim=c(401)) l <- array(NA,dim=c(401)) mx <- 0 mxli <- -999 for (i in 1:401) { l[i] <- (i-201)/100 if (l[i] != 0) { x1 <- (x^l[i] - 1) / l[i] } else { x1 <- log(x) } c[i] <- cor(x1,y) if (mx < abs(c[i])) { mx <- abs(c[i]) mxli <- l[i] } } c mx mxli if (mxli != 0) { x1 <- (x^mxli - 1) / mxli } else { x1 <- log(x) } r<-lm(y~x) se <- sqrt(var(r$residuals)) r1 <- lm(y~x1) se1 <- sqrt(var(r1$residuals)) bitmap(file='test1.png') plot(l,c,main='Box-Cox Linearity Plot',xlab='Lambda',ylab='correlation') grid() dev.off() bitmap(file='test2.png') plot(x,y,main='Linear Fit of Original Data',xlab='x',ylab='y') abline(r) grid() mtext(paste('Residual Standard Deviation = ',se)) dev.off() bitmap(file='test3.png') plot(x1,y,main='Linear Fit of Transformed Data',xlab='x',ylab='y') abline(r1) grid() mtext(paste('Residual Standard Deviation = ',se1)) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Box-Cox Linearity Plot',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'# observations x',header=TRUE) a<-table.element(a,n) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'maximum correlation',header=TRUE) a<-table.element(a,mx) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'optimal lambda(x)',header=TRUE) a<-table.element(a,mxli) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Residual SD (orginial)',header=TRUE) a<-table.element(a,se) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Residual SD (transformed)',header=TRUE) a<-table.element(a,se1) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation