Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
395.3 395.1 403.5 403.3 405.7 406.7 407.2 412.4 415.9 414 411.8 409.9 412.4 415.9 416.3 417.2 421.8 421.4 415.1 412.4 411.8 408.8 404.5 402.5 409.4 410.7 413.4 415.2 417.7 417.8 417.9 418.4 418.2 416.6 418.9 421 423.5 432.3 432.3 428.6 426.7 427.3 428.5 437 442 444.9 441.4 440.3 447.1 455.3 478.6 486.5 487.8 485.9 483.8 488.4 494 493.6 487.3 482.1 484.2 496.8 501.1 499.8 495.5 498.1 503.8 516.2 526.1 527.1 525.1 528.9 540.1 549 556 568.9 589.1 590.3 603.3 638.8 643 656.7 656.1 654.1 659.9 662.1 669.2 673.1 678.3 677.4 678.5 672.4 665.3 667.9 672.1 662.5 682.3 692.1 702.7 721.4 733.2 747.7 737.6 729.3 706.1 674.3 659 645.7
Sample Range:
(leave blank to include all observations)
From:
To:
Number of time lags
60
Default
5
6
7
8
9
10
11
12
24
36
48
60
Box-Cox transformation parameter (Lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
1
0
1
2
Degree of seasonal differencing (D)
1
0
1
2
Seasonality
12
12
1
2
3
4
6
12
CI type
MA
White Noise
MA
Confidence Interval
Use logarithms with this base
(overrules the Box-Cox lambda parameter)
(?)
Chart options
R Code
if (par1 == 'Default') { par1 = 10*log10(length(x)) } else { par1 <- as.numeric(par1) } par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) par5 <- as.numeric(par5) if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma' par7 <- as.numeric(par7) if (par2 == 0) { x <- log(x) } else { x <- (x ^ par2 - 1) / par2 } if (par3 > 0) x <- diff(x,lag=1,difference=par3) if (par4 > 0) x <- diff(x,lag=par5,difference=par4) bitmap(file='pic1.png') racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')) dev.off() bitmap(file='pic2.png') rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF') dev.off() (myacf <- c(racf$acf)) (mypacf <- c(rpacf$acf)) lengthx <- length(x) sqrtn <- sqrt(lengthx) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 2:(par1+1)) { a<-table.row.start(a) a<-table.element(a,i-1,header=TRUE) a<-table.element(a,round(myacf[i],6)) mytstat <- myacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Partial Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 1:par1) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,round(mypacf[i],6)) mytstat <- mypacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation