Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
115.47 103.34 102.6 100.69 105.67 123.61 113.08 106.46 123.38 109.87 95.74 123.06 123.39 120.28 115.33 110.4 114.49 132.03 123.16 118.82 128.32 112.24 104.53 132.57 122.52 131.8 124.55 120.96 122.6 145.52 118.57 134.25 136.7 121.37 111.63 134.42 137.65 137.86 119.77 130.69 128.28 147.45 128.42 136.9 143.95 135.64 122.48 136.83 153.04 142.71 123.46 144.37 146.15 147.61 158.51 147.4 165.05 154.64 126.2 157.36 154.15 123.21 113.07 110.45 113.57 122.44 114.93 111.85 126.04 121.34
Sample Range:
(leave blank to include all observations)
From:
To:
Seasonal Period
12
12
4
6
12
Chart options
R Code
par1 <- as.numeric(par1) (n <- length(x)) (np <- floor(n / par1)) arr <- array(NA,dim=c(par1,np)) j <- 0 k <- 1 for (i in 1:(np*par1)) { j = j + 1 arr[j,k] <- x[i] if (j == par1) { j = 0 k=k+1 } } arr arr.mean <- array(NA,dim=np) arr.sd <- array(NA,dim=np) arr.range <- array(NA,dim=np) for (j in 1:np) { arr.mean[j] <- mean(arr[,j],na.rm=TRUE) arr.sd[j] <- sd(arr[,j],na.rm=TRUE) arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) } arr.mean arr.sd arr.range (lm1 <- lm(arr.sd~arr.mean)) (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) (lm2 <- lm(arr.range~arr.mean)) bitmap(file='test1.png') plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') dev.off() bitmap(file='test2.png') plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Section',header=TRUE) a<-table.element(a,'Mean',header=TRUE) a<-table.element(a,'Standard Deviation',header=TRUE) a<-table.element(a,'Range',header=TRUE) a<-table.row.end(a) for (j in 1:np) { a<-table.row.start(a) a<-table.element(a,j,header=TRUE) a<-table.element(a,arr.mean[j]) a<-table.element(a,arr.sd[j] ) a<-table.element(a,arr.range[j] ) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,lm1$coefficients[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,lm1$coefficients[[2]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,summary(lm1)$coefficients[2,2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,summary(lm1)$coefficients[2,3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,summary(lm1)$coefficients[2,4]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,lnlm1$coefficients[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,lnlm1$coefficients[[2]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,summary(lnlm1)$coefficients[2,2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,summary(lnlm1)$coefficients[2,3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,summary(lnlm1)$coefficients[2,4]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Lambda',header=TRUE) a<-table.element(a,1-lnlm1$coefficients[[2]]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation