Send output to:
Data:
 
Sample Range:
(leave blank to include all observations)
From:
To:
Number of time lags 
Box-Cox transformation parameter (Lambda) 
Degree of non-seasonal differencing (d) 
Degree of seasonal differencing (D) 
Seasonality 
CI type 
Confidence Interval 
Use logarithms with this base
(overrules the Box-Cox lambda parameter)
 (?)
Chart options
R Code




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center


Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.315496-3.44170.000399
2-0.08603-0.93850.174951
30.0712490.77720.219283
4-0.085986-0.9380.175073
50.0514470.56120.287853
6-0.193569-2.11160.018407
7-0.00856-0.09340.462878
8-0.019607-0.21390.415499
90.0489350.53380.297231
10-0.105943-1.15570.125058
11-0.248522-2.71110.00385
120.7944868.66680
13-0.250211-2.72950.003653
14-0.061976-0.67610.25015
150.0713890.77880.218832
16-0.113798-1.24140.108451
170.0933311.01810.155343
18-0.193299-2.10860.018536
19-0.019853-0.21660.414458
200.0187810.20490.419007
21-0.010362-0.1130.455096
22-0.096649-1.05430.146937
23-0.154402-1.68430.047369
240.6449217.03530
25-0.186977-2.03970.021798
26-0.032284-0.35220.362664
270.022990.25080.401203
28-0.086604-0.94470.173353
290.1074381.1720.121767
30-0.209948-2.29030.011884
310.0185860.20280.419837
320.0078050.08510.466147
33-0.023287-0.2540.399954
34-0.050248-0.54810.292311
35-0.14913-1.62680.05321
360.5144725.61220
37-0.141644-1.54520.062482
38-0.032128-0.35050.363302
390.0211010.23020.409171
40-0.062571-0.68260.248104
410.073010.79640.21368
42-0.178444-1.94660.02697
430.0407340.44440.328797
44-0.012285-0.1340.446811
45-0.040101-0.43750.331287
46-0.015265-0.16650.434014
47-0.157252-1.71540.044436
480.4736475.16690


Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.315496-3.44170.000399
2-0.20608-2.24810.013207
3-0.03074-0.33530.368984
4-0.100832-1.09990.136788
5-0.003301-0.0360.485666
6-0.233306-2.54510.006102
7-0.184346-2.0110.023294
8-0.206716-2.2550.012981
9-0.077684-0.84740.199228
10-0.24386-2.66020.004443
11-0.589307-6.42860
120.5694886.21240
130.1627811.77570.039167
140.0388510.42380.336234
15-0.028177-0.30740.379549
16-0.031007-0.33820.367888
17-0.031747-0.34630.364858
18-0.05627-0.61380.270247
190.0294450.32120.37431
20-0.016666-0.18180.428023
21-0.158258-1.72640.043436
22-0.112501-1.22720.111077
230.0588970.64250.260894
240.1093111.19240.117731
250.073030.79670.213615
260.0805490.87870.190671
27-0.101972-1.11240.134108
280.0018630.02030.491909
290.0247720.27020.393725
30-0.00722-0.07880.468676
310.099721.08780.139437
32-0.055553-0.6060.272829
330.0285960.3120.377812
340.1510051.64730.051071
350.0041430.04520.482015
36-0.044221-0.48240.315207
37-0.075666-0.82540.205392
38-0.094216-1.02780.153071
390.0227530.24820.402202
400.0684180.74630.228464
41-0.072426-0.79010.215529
42-0.004886-0.05330.47879
43-0.032712-0.35680.360919
440.0115190.12570.450106
450.0130940.14280.443331
46-0.023444-0.25570.399295
47-0.105569-1.15160.125892
480.036130.39410.347094




Click here to blog (archive) this computation