Send output to:
Data X:
Names of X columns:
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series (?)
Fixed Seasonal Effects 
Type of Equation 
Degree of Predetermination (lagged endogenous variables) 
Degree of Seasonal Predetermination 
Seasonality 
Chart options
R Code




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center


Multiple Linear Regression - Estimated Regression Equation
2000[t] = -0.00379764888316659 + 0.744621059986103`2001`[t] + 1.46947563970651`2002`[t] -1.10699759664097`2003`[t] + 0.445419410028657`2004`[t] + 0.705383626314368`2005`[t] -1.59307558042127`2006`[t] -0.850058938680027`2007`[t] -0.290292467105868`2008`[t] + 1.65727639179975`2009`[t] + 0.0595801154943772`2010`[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)-0.003797648883166590.032571-0.11660.9145490.457274
`2001`0.7446210599861030.3017622.46760.0902580.045129
`2002`1.469475639706510.460863.18850.0497660.024883
`2003`-1.106997596640970.56029-1.97580.1426450.071322
`2004`0.4454194100286570.6399270.6960.5364770.268239
`2005`0.7053836263143680.4775641.4770.2361660.118083
`2006`-1.593075580421270.705436-2.25830.1090990.054549
`2007`-0.8500589386800270.348086-2.44210.0923270.046164
`2008`-0.2902924671058680.300657-0.96550.4055030.202752
`2009`1.657276391799750.5511873.00670.057360.02868
`2010`0.05958011549437720.3530180.16880.8767120.438356


Multiple Linear Regression - Regression Statistics
Multiple R0.999999875739288
R-squared0.999999751478592
Adjusted R-squared0.9999989230739
F-TEST (value)1207139.16917287
F-TEST (DF numerator)10
F-TEST (DF denominator)3
p-value1.11793729828946e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.0758428501486329
Sum Squared Residuals0.0172564137560039


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
15.0295.04416323126643-0.0151632312664296
224.99424.99045590940710.00354409059290757
36.6396.65206296548627-0.0130629654862695
43.4513.426298634212460.0247013657875365
55.8445.89845048944828-0.0544504894482798
63.9543.909031138898130.0449688611018721
75.1065.089422085829250.0165779141707507
815.115.111290059657-0.0112900596570111
9279278.9997260216710.000273978329242537
101.5671.521375152891450.0456248471085484
115.6165.576847975013130.039152024986873
124.564.57395169653827-0.0139516965382738
131.2621.34442709170879-0.0824270917087882
142.0952.079497547972680.0155024520273212












Click here to blog (archive) this computation