Send output to:
Data X:
Names of X columns:
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series (?)
Fixed Seasonal Effects 
Type of Equation 
Degree of Predetermination (lagged endogenous variables) 
Degree of Seasonal Predetermination 
Seasonality 
Chart options
R Code




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center
R Framework
error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.


Multiple Linear Regression - Estimated Regression Equation
Rang[t] = + 95.7151231150161 + 0.000811260866225306Pageviews[t] -0.0967248435916392Blogs[t] + 1.54079952985965PR[t] -0.123726061471697LFM[t] + 0.142466830241949KCS[t] + 0.0742760351352662SPR[t] + 0.284731988242068CH[t] -2.96193342808933`Hours\r`[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)95.71512311501617.19395413.304900
Pageviews0.0008112608662253060.0017390.46650.6425290.321265
Blogs-0.09672484359163920.093794-1.03120.3064970.153248
PR1.540799529859650.8745561.76180.0831120.041556
LFM-0.1237260614716970.183882-0.67290.503580.25179
KCS0.1424668302419490.1205351.18190.2418130.120906
SPR0.07427603513526620.4656260.15950.8737870.436894
CH0.2847319882420680.5739760.49610.6216280.310814
`Hours\r`-2.961933428089330.248093-11.938800


Multiple Linear Regression - Regression Statistics
Multiple R0.910480067958451
R-squared0.828973954149626
Adjusted R-squared0.8065443087922
F-TEST (value)36.9588524891752
F-TEST (DF numerator)8
F-TEST (DF denominator)61
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation8.95113952383889
Sum Squared Residuals4887.49682528907


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
11-22.185566722993123.1855667229931
22-20.074726598292322.0747265982923
33-10.205729427637613.2057294276376
44-4.620497348266958.62049734826695
552.191536170353872.80846382964613
668.21596816004922-2.21596816004922
777.63441967373456-0.634419673734564
8818.5338339809601-10.5338339809601
9911.0839474403475-2.08394744034752
101010.535007305522-0.535007305522019
111119.8934520511609-8.89345205116092
121220.8906440414713-8.89064404147126
131321.0410425525564-8.04104255255635
141421.5364176063876-7.53641760638759
151521.5554242447723-6.55542424477232
161624.3510999606083-8.35109996060832
171723.4437932080972-6.44379320809723
181827.6562889797842-9.65628897978419
191925.7930806445259-6.79308064452591
202028.2676264041034-8.26762640410337
212129.5202930996286-8.52029309962864
222229.5927496252256-7.59274962522556
232332.7722985269116-9.77229852691162
242436.8931105093952-12.8931105093952
252534.0386203875234-9.03862038752342
262636.761084543193-10.761084543193
272738.7754468572913-11.7754468572913
282832.832673722977-4.83267372297702
292931.7858099074563-2.7858099074563
303031.1329684124403-1.13296841244025
313137.875156714218-6.87515671421804
323249.9273583913975-17.9273583913975
333341.0592442871859-8.05924428718592
343437.982194281977-3.98219428197695
353540.1068675729938-5.10686757299381
363646.0178746459458-10.0178746459458
373741.8164205346795-4.81642053467953
383841.6394331281066-3.6394331281066
393940.9224211544414-1.92242115444143
404044.8850451165371-4.88504511653711
414139.48991079242491.51008920757512
424242.929502611497-0.929502611496954
434342.82482447350040.175175526499625
444442.37206592841161.6279340715884
454547.7249912328943-2.72499123289427
464645.54471744082250.455282559177543
474741.83462513717035.16537486282967
484847.1579255035580.842074496442033
494945.38548818848563.61451181151443
505045.2026229217824.79737707821799
515144.69566547704356.30433452295647
525243.81073541847558.18926458152452
535348.97739351179744.02260648820258
545447.45581985083786.54418014916219
555546.68853509105498.31146490894511
565648.4044775207587.595522479242
575750.76174401920966.23825598079044
585852.90299318797045.09700681202958
595947.927376024933411.0726239750666
606054.6734549706755.326545029325
616153.55250554627187.44749445372823
626256.66571539727395.33428460272608
636355.88830241039877.11169758960128
646448.968850283857215.0311497161429
656556.55904581560098.44095418439909
666660.14636890243675.85363109756333
676756.51118640900410.488813590996
686858.06174767532369.93825232467636
696960.65337350331088.34662649668918
707059.353901006450710.6460989935493


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
120.04778714980753660.09557429961507330.952212850192463
130.02056576604523480.04113153209046970.979434233954765
140.008413962356553870.01682792471310770.991586037643446
150.005849433918460880.01169886783692180.994150566081539
160.007792755321149070.01558551064229810.992207244678851
170.03439027197038590.06878054394077180.965609728029614
180.02820987419713830.05641974839427670.971790125802862
190.05402295542799160.1080459108559830.945977044572008
200.2116953981695570.4233907963391140.788304601830443
210.5082561149168110.9834877701663790.491743885083189
220.6001581352511380.7996837294977240.399841864748862
230.6039086568012060.7921826863975890.396091343198794
240.5616684438407470.8766631123185050.438331556159253
250.5687468490115920.8625063019768160.431253150988408
260.5051058496262250.9897883007475510.494894150373775
270.4592616071594820.9185232143189650.540738392840518
280.5672161541739660.8655676916520690.432783845826034
290.6555245982734920.6889508034530170.344475401726508
300.7738248534910720.4523502930178560.226175146508928
310.8367101373561670.3265797252876660.163289862643833
320.822124327189740.355751345620520.17787567281026
330.8884823760497750.223035247900450.111517623950225
340.9156405397713660.1687189204572680.084359460228634
350.9394505546133540.1210988907732930.0605494453866463
360.9767307680600570.04653846387988670.0232692319399434
370.9914651813736540.01706963725269150.00853481862634574
380.9978869451634940.004226109673011560.00211305483650578
390.9990828132631190.001834373473761720.000917186736880859
400.9997133829619960.00057323407600910.00028661703800455
410.9998228742333950.00035425153320950.00017712576660475
420.9998520351325620.0002959297348762630.000147964867438132
430.9999009400434990.0001981199130013649.90599565006822e-05
440.9999773550783434.52898433142684e-052.26449216571342e-05
450.9999917360752281.6527849543831e-058.26392477191552e-06
460.9999949931722591.00136554828518e-055.00682774142588e-06
470.9999953551760829.28964783589031e-064.64482391794516e-06
480.9999948696253291.02607493417073e-055.13037467085365e-06
490.9999955713277868.85734442733593e-064.42867221366796e-06
500.9999899793721242.00412557524363e-051.00206278762181e-05
510.9999681000499626.37999000751851e-053.18999500375926e-05
520.9999629902033067.40195933879336e-053.70097966939668e-05
530.9999619193813697.61612372612087e-053.80806186306043e-05
540.9999629659129897.40681740213596e-053.70340870106798e-05
550.9998937773550410.0002124452899176760.000106222644958838
560.9996284905333980.0007430189332044610.00037150946660223
570.9980191729252570.00396165414948520.0019808270747426
580.9908024711234840.01839505775303280.00919752887651639


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level200.425531914893617NOK
5% type I error level270.574468085106383NOK
10% type I error level300.638297872340426NOK












Click here to blog (archive) this computation