Summary of computational transaction | |
Raw Input | view raw input (R code) |
Raw Output | view raw output of R engine |
Computing time | 2 seconds |
R Server | Big Analytics Cloud Computing Center |
Multiple Linear Regression - Estimated Regression Equation |
Points[t] = + 4.14870670628906 -3.69049908336127Height[t] + 0.00945845788151721Weight[t] + 47.9401991647774Fieldgoals[t] + 11.3710192606295Freethrows[t] + e[t] |
Multiple Linear Regression - Ordinary Least Squares | |||||
Variable | Parameter | S.D. | T-STAT H0: parameter = 0 | 2-tail p-value | 1-tail p-value |
(Intercept) | 4.14870670628906 | 14.855006 | 0.2793 | 0.781205 | 0.390603 |
Height | -3.69049908336127 | 2.97078 | -1.2423 | 0.220051 | 0.110026 |
Weight | 0.00945845788151721 | 0.046297 | 0.2043 | 0.838966 | 0.419483 |
Fieldgoals | 47.9401991647774 | 15.709131 | 3.0517 | 0.003668 | 0.001834 |
Freethrows | 11.3710192606295 | 7.868536 | 1.4451 | 0.154788 | 0.077394 |
Multiple Linear Regression - Regression Statistics | |
Multiple R | 0.471434652205528 |
R-squared | 0.222250631300147 |
Adjusted R-squared | 0.158760886916485 |
F-TEST (value) | 3.50057530484154 |
F-TEST (DF numerator) | 4 |
F-TEST (DF denominator) | 49 |
p-value | 0.013639681676693 |
Multiple Linear Regression - Residual Statistics | |
Residual Standard Deviation | 5.41074474747539 |
Sum Squared Residuals | 1434.5317773943 |
Multiple Linear Regression - Actuals, Interpolation, and Residuals | |||
Time or Index | Actuals | Interpolation Forecast | Residuals Prediction Error |
1 | 9.2 | 10.0123589367483 | -0.812358936748346 |
2 | 11.7 | 12.517773887186 | -0.817773887185998 |
3 | 15.8 | 12.8406960467427 | 2.9593039532573 |
4 | 8.6 | 10.3157911993394 | -1.71579119933945 |
5 | 23.2 | 12.3823136563589 | 10.8176863436411 |
6 | 27.4 | 12.1892864594283 | 15.2107135405717 |
7 | 9.3 | 14.7623100323856 | -5.46231003238564 |
8 | 16 | 12.2882683953416 | 3.71173160465835 |
9 | 4.7 | 11.0624810251259 | -6.36248102512589 |
10 | 12.5 | 13.8010254919996 | -1.30102549199961 |
11 | 20.1 | 12.925212153811 | 7.17478784618905 |
12 | 9.1 | 13.2439649805998 | -4.14396498059976 |
13 | 8.1 | 8.64006433260676 | -0.540064332606763 |
14 | 8.6 | 12.6052585135438 | -4.00525851354384 |
15 | 20.3 | 12.9243025667769 | 7.37569743322306 |
16 | 25 | 15.2545908026032 | 9.74540919739684 |
17 | 19.2 | 15.5813827174425 | 3.61861728255749 |
18 | 3.3 | 5.09650333893457 | -1.79650333893458 |
19 | 11.2 | 9.94940424303772 | 1.25059575696228 |
20 | 10.5 | 12.4969612371254 | -1.9969612371254 |
21 | 10.1 | 9.05637536306628 | 1.04362463693372 |
22 | 7.2 | 10.2508314337258 | -3.0508314337258 |
23 | 13.6 | 8.06191203075837 | 5.53808796924163 |
24 | 9 | 10.0725578058519 | -1.07255780585193 |
25 | 24.6 | 14.7496348388613 | 9.85036516113873 |
26 | 12.6 | 12.0761089822285 | 0.523891017771477 |
27 | 5.6 | 13.9530028667991 | -8.35300286679914 |
28 | 8.7 | 8.71473239239671 | -0.0147323923967103 |
29 | 7.7 | 11.3419041026698 | -3.64190410266982 |
30 | 24.1 | 14.4070745470549 | 9.69292545294513 |
31 | 11.7 | 15.2728312600118 | -3.57283126001183 |
32 | 7.7 | 10.4123042990696 | -2.71230429906963 |
33 | 9.6 | 13.6499130748098 | -4.04991307480981 |
34 | 7.2 | 10.2508314337258 | -3.0508314337258 |
35 | 12.3 | 8.9744592454595 | 3.3255407545405 |
36 | 8.9 | 14.7076375300961 | -5.80763753009605 |
37 | 13.6 | 14.9072656256573 | -1.30726562565732 |
38 | 11.2 | 13.2531659986165 | -2.05316599861648 |
39 | 2.8 | 7.32888666064328 | -4.52888666064328 |
40 | 3.2 | 6.65979040013695 | -3.45979040013695 |
41 | 9.4 | 8.95334040628063 | 0.446659593719373 |
42 | 11.9 | 5.83073166030797 | 6.06926833969203 |
43 | 15.4 | 13.8267528762838 | 1.57324712371624 |
44 | 7.4 | 16.3662783858909 | -8.96627838589092 |
45 | 18.9 | 12.0092846539182 | 6.89071534608183 |
46 | 7.9 | 10.1187168518401 | -2.21871685184006 |
47 | 12.2 | 17.6347150913581 | -5.43471509135815 |
48 | 11 | 9.70871124691339 | 1.29128875308661 |
49 | 2.8 | 8.95738083438331 | -6.15738083438331 |
50 | 11.8 | 14.7364478817661 | -2.93644788176607 |
51 | 17.1 | 15.9327594135102 | 1.16724058648976 |
52 | 11.6 | 12.2597264618977 | -0.65972646189774 |
53 | 5.8 | 11.3418805395639 | -5.54188053956391 |
54 | 8.3 | 10.0321037873082 | -1.73210378730819 |
Goldfeld-Quandt test for Heteroskedasticity | |||
p-values | Alternative Hypothesis | ||
breakpoint index | greater | 2-sided | less |
8 | 0.346674464959306 | 0.693348929918612 | 0.653325535040694 |
9 | 0.969673504895931 | 0.0606529902081386 | 0.0303264951040693 |
10 | 0.942389318935102 | 0.115221362129795 | 0.0576106810648977 |
11 | 0.964604553136096 | 0.0707908937278072 | 0.0353954468639036 |
12 | 0.970641444157544 | 0.0587171116849113 | 0.0293585558424557 |
13 | 0.948552194291449 | 0.102895611417102 | 0.0514478057085511 |
14 | 0.941052830651116 | 0.117894338697769 | 0.0589471693488843 |
15 | 0.952979873180514 | 0.094040253638972 | 0.047020126819486 |
16 | 0.973474302795041 | 0.0530513944099185 | 0.0265256972049592 |
17 | 0.96339859723598 | 0.0732028055280407 | 0.0366014027640203 |
18 | 0.946451139553082 | 0.107097720893836 | 0.053548860446918 |
19 | 0.922584048057446 | 0.154831903885107 | 0.0774159519425537 |
20 | 0.897298724406581 | 0.205402551186838 | 0.102701275593419 |
21 | 0.856730843178703 | 0.286538313642594 | 0.143269156821297 |
22 | 0.818635568456793 | 0.362728863086414 | 0.181364431543207 |
23 | 0.824505313175872 | 0.350989373648256 | 0.175494686824128 |
24 | 0.767723788011039 | 0.464552423977923 | 0.232276211988961 |
25 | 0.900757090646285 | 0.19848581870743 | 0.0992429093537148 |
26 | 0.863912410917389 | 0.272175178165221 | 0.136087589082611 |
27 | 0.925550758981867 | 0.148898482036266 | 0.0744492410181331 |
28 | 0.890077789197883 | 0.219844421604234 | 0.109922210802117 |
29 | 0.861679328635605 | 0.27664134272879 | 0.138320671364395 |
30 | 0.971737008861826 | 0.0565259822763481 | 0.0282629911381741 |
31 | 0.961387112262467 | 0.0772257754750663 | 0.0386128877375331 |
32 | 0.941960830772221 | 0.116078338455559 | 0.0580391692277793 |
33 | 0.923401535581714 | 0.153196928836571 | 0.0765984644182857 |
34 | 0.894314457372777 | 0.211371085254447 | 0.105685542627223 |
35 | 0.871385497752883 | 0.257229004494235 | 0.128614502247117 |
36 | 0.856070118817187 | 0.287859762365625 | 0.143929881182813 |
37 | 0.799030921439965 | 0.40193815712007 | 0.200969078560035 |
38 | 0.723613024773335 | 0.55277395045333 | 0.276386975226665 |
39 | 0.703299313295791 | 0.593401373408418 | 0.296700686704209 |
40 | 0.746249325058182 | 0.507501349883636 | 0.253750674941818 |
41 | 0.646007856458895 | 0.707984287082211 | 0.353992143541105 |
42 | 0.58725084670503 | 0.82549830658994 | 0.41274915329497 |
43 | 0.552039181015052 | 0.895921637969895 | 0.447960818984948 |
44 | 0.59057656134549 | 0.81884687730902 | 0.40942343865451 |
45 | 0.852416582232541 | 0.295166835534918 | 0.147583417767459 |
46 | 0.798975727934986 | 0.402048544130028 | 0.201024272065014 |
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity | |||
Description | # significant tests | % significant tests | OK/NOK |
1% type I error level | 0 | 0 | OK |
5% type I error level | 0 | 0 | OK |
10% type I error level | 8 | 0.205128205128205 | NOK |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |