Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
125 123 117 114 111 112 144 150 149 134 123 116 117 111 105 102 95 93 124 130 124 115 106 105 105 101 95 93 84 87 116 120 117 109 105 107 109 109 108 107 99 103 131 137 135 124 118 121 121 118 113 107 100 102 130 136 133 120 112 109 110 106 102 98 92 92 120 127 124 114 108 106 111 110 104 100 96 98 122 134 133 125 118 116
Sample Range:
(leave blank to include all observations)
From:
To:
R Code
num <- 50 res <- array(NA,dim=c(num,3)) q1 <- function(data,n,p,i,f) { np <- n*p; i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q2 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q3 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- data[i+1] } } q4 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- (data[i]+data[i+1])/2 } else { qvalue <- data[i+1] } } q5 <- function(data,n,p,i,f) { np <- (n-1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i+1] } else { qvalue <- data[i+1] + f*(data[i+2]-data[i+1]) } } q6 <- function(data,n,p,i,f) { np <- n*p+0.5 i <<- floor(np) f <<- np - i qvalue <- data[i] } q7 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- f*data[i] + (1-f)*data[i+1] } } q8 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { if (f == 0.5) { qvalue <- (data[i]+data[i+1])/2 } else { if (f < 0.5) { qvalue <- data[i] } else { qvalue <- data[i+1] } } } } iqd <- function(x,def) { x <-sort(x[!is.na(x)]) n<-length(x) if (def==1) { qvalue1 <- q1(x,n,0.25,i,f) qvalue3 <- q1(x,n,0.75,i,f) } if (def==2) { qvalue1 <- q2(x,n,0.25,i,f) qvalue3 <- q2(x,n,0.75,i,f) } if (def==3) { qvalue1 <- q3(x,n,0.25,i,f) qvalue3 <- q3(x,n,0.75,i,f) } if (def==4) { qvalue1 <- q4(x,n,0.25,i,f) qvalue3 <- q4(x,n,0.75,i,f) } if (def==5) { qvalue1 <- q5(x,n,0.25,i,f) qvalue3 <- q5(x,n,0.75,i,f) } if (def==6) { qvalue1 <- q6(x,n,0.25,i,f) qvalue3 <- q6(x,n,0.75,i,f) } if (def==7) { qvalue1 <- q7(x,n,0.25,i,f) qvalue3 <- q7(x,n,0.75,i,f) } if (def==8) { qvalue1 <- q8(x,n,0.25,i,f) qvalue3 <- q8(x,n,0.75,i,f) } iqdiff <- qvalue3 - qvalue1 return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1))) } range <- max(x) - min(x) lx <- length(x) biasf <- (lx-1)/lx varx <- var(x) bvarx <- varx*biasf sdx <- sqrt(varx) mx <- mean(x) bsdx <- sqrt(bvarx) x2 <- x*x mse0 <- sum(x2)/lx xmm <- x-mx xmm2 <- xmm*xmm msem <- sum(xmm2)/lx axmm <- abs(x - mx) medx <- median(x) axmmed <- abs(x - medx) xmmed <- x - medx xmmed2 <- xmmed*xmmed msemed <- sum(xmmed2)/lx qarr <- array(NA,dim=c(8,3)) for (j in 1:8) { qarr[j,] <- iqd(x,j) } sdpo <- 0 adpo <- 0 for (i in 1:(lx-1)) { for (j in (i+1):lx) { ldi <- x[i]-x[j] aldi <- abs(ldi) sdpo = sdpo + ldi * ldi adpo = adpo + aldi } } denom <- (lx*(lx-1)/2) sdpo = sdpo / denom adpo = adpo / denom gmd <- 0 for (i in 1:lx) { for (j in 1:lx) { ldi <- abs(x[i]-x[j]) gmd = gmd + ldi } } gmd <- gmd / (lx*(lx-1)) sumx <- sum(x) pk <- x / sumx ck <- cumsum(pk) dk <- array(NA,dim=lx) for (i in 1:lx) { if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i] } bigd <- sum(dk) * 2 / (lx-1) iod <- 1 - sum(pk*pk) res[1,] <- c('Absolute range','http://www.xycoon.com/absolute.htm', range) res[2,] <- c('Relative range (unbiased)','http://www.xycoon.com/relative.htm', range/sd(x)) res[3,] <- c('Relative range (biased)','http://www.xycoon.com/relative.htm', range/sqrt(varx*biasf)) res[4,] <- c('Variance (unbiased)','http://www.xycoon.com/unbiased.htm', varx) res[5,] <- c('Variance (biased)','http://www.xycoon.com/biased.htm', bvarx) res[6,] <- c('Standard Deviation (unbiased)','http://www.xycoon.com/unbiased1.htm', sdx) res[7,] <- c('Standard Deviation (biased)','http://www.xycoon.com/biased1.htm', bsdx) res[8,] <- c('Coefficient of Variation (unbiased)','http://www.xycoon.com/variation.htm', sdx/mx) res[9,] <- c('Coefficient of Variation (biased)','http://www.xycoon.com/variation.htm', bsdx/mx) res[10,] <- c('Mean Squared Error (MSE versus 0)','http://www.xycoon.com/mse.htm', mse0) res[11,] <- c('Mean Squared Error (MSE versus Mean)','http://www.xycoon.com/mse.htm', msem) res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'http://www.xycoon.com/mean2.htm', sum(axmm)/lx) res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'http://www.xycoon.com/median1.htm', sum(axmmed)/lx) res[14,] <- c('Median Absolute Deviation from Mean', 'http://www.xycoon.com/mean3.htm', median(axmm)) res[15,] <- c('Median Absolute Deviation from Median', 'http://www.xycoon.com/median2.htm', median(axmmed)) res[16,] <- c('Mean Squared Deviation from Mean', 'http://www.xycoon.com/mean1.htm', msem) res[17,] <- c('Mean Squared Deviation from Median', 'http://www.xycoon.com/median.htm', msemed) load(file='createtable') mylink1 <- hyperlink('http://www.xycoon.com/difference.htm','Interquartile Difference','') mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ') res[18,] <- c('', mylink2, qarr[1,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ') res[19,] <- c('', mylink2, qarr[2,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ') res[20,] <- c('', mylink2, qarr[3,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ') res[21,] <- c('', mylink2, qarr[4,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ') res[22,] <- c('', mylink2, qarr[5,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ') res[23,] <- c('', mylink2, qarr[6,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ') res[24,] <- c('', mylink2, qarr[7,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ') res[25,] <- c('', mylink2, qarr[8,1]) mylink1 <- hyperlink('http://www.xycoon.com/deviation.htm','Semi Interquartile Difference','') mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ') res[26,] <- c('', mylink2, qarr[1,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ') res[27,] <- c('', mylink2, qarr[2,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ') res[28,] <- c('', mylink2, qarr[3,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ') res[29,] <- c('', mylink2, qarr[4,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ') res[30,] <- c('', mylink2, qarr[5,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ') res[31,] <- c('', mylink2, qarr[6,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ') res[32,] <- c('', mylink2, qarr[7,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ') res[33,] <- c('', mylink2, qarr[8,2]) mylink1 <- hyperlink('http://www.xycoon.com/variation1.htm','Coefficient of Quartile Variation','') mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ') res[34,] <- c('', mylink2, qarr[1,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ') res[35,] <- c('', mylink2, qarr[2,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ') res[36,] <- c('', mylink2, qarr[3,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ') res[37,] <- c('', mylink2, qarr[4,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ') res[38,] <- c('', mylink2, qarr[5,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ') res[39,] <- c('', mylink2, qarr[6,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ') res[40,] <- c('', mylink2, qarr[7,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ') res[41,] <- c('', mylink2, qarr[8,3]) res[42,] <- c('Number of all Pairs of Observations', 'http://www.xycoon.com/pair_numbers.htm', lx*(lx-1)/2) res[43,] <- c('Squared Differences between all Pairs of Observations', 'http://www.xycoon.com/squared_differences.htm', sdpo) res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'http://www.xycoon.com/mean_abs_differences.htm', adpo) res[45,] <- c('Gini Mean Difference', 'http://www.xycoon.com/gini_mean_difference.htm', gmd) res[46,] <- c('Leik Measure of Dispersion', 'http://www.xycoon.com/leiks_d.htm', bigd) res[47,] <- c('Index of Diversity', 'http://www.xycoon.com/diversity.htm', iod) res[48,] <- c('Index of Qualitative Variation', 'http://www.xycoon.com/qualitative_variation.htm', iod*lx/(lx-1)) res[49,] <- c('Coefficient of Dispersion', 'http://www.xycoon.com/dispersion.htm', sum(axmm)/lx/medx) res[50,] <- c('Observations', '', lx) res a<-table.start() a<-table.row.start(a) a<-table.element(a,'Variability - Ungrouped Data',2,TRUE) a<-table.row.end(a) for (i in 1:num) { a<-table.row.start(a) if (res[i,1] != '') { a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE) } else { a<-table.element(a,res[i,2],header=TRUE) } a<-table.element(a,res[i,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Variability - Ungrouped Data
Absolute range
66
Relative range (unbiased)
4.76835753923946
Relative range (biased)
4.79699658075562
Variance (unbiased)
191.580034423408
Variance (biased)
189.299319727891
Standard Deviation (unbiased)
13.841243962282
Standard Deviation (biased)
13.7586089314251
Coefficient of Variation (unbiased)
0.121719482080369
Coefficient of Variation (biased)
0.120992792110522
Mean Squared Error (MSE versus 0)
13120.2380952381
Mean Squared Error (MSE versus Mean)
189.299319727891
Mean Absolute Deviation from Mean (MAD Mean)
11.1054421768707
Mean Absolute Deviation from Median (MAD Median)
11.047619047619
Median Absolute Deviation from Mean
9
Median Absolute Deviation from Median
9
Mean Squared Deviation from Mean
189.299319727891
Mean Squared Deviation from Median
192.238095238095
Interquartile Difference
(Weighted Average at Xnp)
18
Interquartile Difference
(Weighted Average at X(n+1)p)
18
Interquartile Difference
(Empirical Distribution Function)
18
Interquartile Difference
(Empirical Distribution Function - Averaging)
18
Interquartile Difference
(Empirical Distribution Function - Interpolation)
18
Interquartile Difference
(Closest Observation)
18
Interquartile Difference
(True Basic - Statistics Graphics Toolkit)
18
Interquartile Difference
(MS Excel (old versions))
18
Semi Interquartile Difference
(Weighted Average at Xnp)
9
Semi Interquartile Difference
(Weighted Average at X(n+1)p)
9
Semi Interquartile Difference
(Empirical Distribution Function)
9
Semi Interquartile Difference
(Empirical Distribution Function - Averaging)
9
Semi Interquartile Difference
(Empirical Distribution Function - Interpolation)
9
Semi Interquartile Difference
(Closest Observation)
9
Semi Interquartile Difference
(True Basic - Statistics Graphics Toolkit)
9
Semi Interquartile Difference
(MS Excel (old versions))
9
Coefficient of Quartile Variation
(Weighted Average at Xnp)
0.0789473684210526
Coefficient of Quartile Variation
(Weighted Average at X(n+1)p)
0.0789473684210526
Coefficient of Quartile Variation
(Empirical Distribution Function)
0.0789473684210526
Coefficient of Quartile Variation
(Empirical Distribution Function - Averaging)
0.0789473684210526
Coefficient of Quartile Variation
(Empirical Distribution Function - Interpolation)
0.0789473684210526
Coefficient of Quartile Variation
(Closest Observation)
0.0789473684210526
Coefficient of Quartile Variation
(True Basic - Statistics Graphics Toolkit)
0.0789473684210526
Coefficient of Quartile Variation
(MS Excel (old versions))
0.0789473684210526
Number of all Pairs of Observations
3486
Squared Differences between all Pairs of Observations
383.160068846816
Mean Absolute Differences between all Pairs of Observations
15.6844520940906
Gini Mean Difference
15.6844520940906
Leik Measure of Dispersion
0.511460414522411
Index of Diversity
0.987920961241158
Index of Qualitative Variation
0.999823623424787
Coefficient of Dispersion
0.0991557337220603
Observations
84
Click here to blog (archive) this computation