Send output to:
Data:
 
Type of transformation 
Minimum lambda 
Maximum lambda 
Constant term to be added before analysis is performed (?)
Display table with original and transformed data? 
Chart options
R Code




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center


Box-Cox Normality Plot
# observations x291
maximum correlation0.916665444070694
optimal lambda1.38
transformation formulafor all lambda <> 0 : T(Y) = (Y^lambda - 1) / lambda


Obs.OriginalTransformed
10.5-0.446218264259418
20.5-0.446218264259418
30.5-0.446218264259418
40.5-0.446218264259418
50.5-0.446218264259418
60.5-0.446218264259418
70.5-0.446218264259418
82.51.84148919688188
92.51.84148919688188
102.51.84148919688188
112.51.84148919688188
122.51.84148919688188
132.51.84148919688188
142.51.84148919688188
152.51.84148919688188
163.53.35794336336114
173.53.35794336336114
183.53.35794336336114
193.53.35794336336114
203.53.35794336336114
213.53.35794336336114
223.53.35794336336114
233.53.35794336336114
243.53.35794336336114
253.53.35794336336114
264.55.05039149406579
274.55.05039149406579
284.55.05039149406579
294.55.05039149406579
304.55.05039149406579
314.55.05039149406579
324.55.05039149406579
334.55.05039149406579
344.55.05039149406579
354.55.05039149406579
364.55.05039149406579
374.55.05039149406579
385.56.89301951703742
395.56.89301951703742
405.56.89301951703742
415.56.89301951703742
425.56.89301951703742
435.56.89301951703742
445.56.89301951703742
455.56.89301951703742
465.56.89301951703742
475.56.89301951703742
485.56.89301951703742
495.56.89301951703742
505.56.89301951703742
515.56.89301951703742
525.56.89301951703742
535.56.89301951703742
545.56.89301951703742
555.56.89301951703742
565.56.89301951703742
575.56.89301951703742
585.56.89301951703742
595.56.89301951703742
605.56.89301951703742
615.56.89301951703742
625.56.89301951703742
635.56.89301951703742
645.56.89301951703742
655.56.89301951703742
665.56.89301951703742
675.56.89301951703742
685.56.89301951703742
695.56.89301951703742
705.56.89301951703742
715.56.89301951703742
725.56.89301951703742
736.58.86807298987499
746.58.86807298987499
756.58.86807298987499
766.58.86807298987499
776.58.86807298987499
786.58.86807298987499
796.58.86807298987499
806.58.86807298987499
816.58.86807298987499
826.58.86807298987499
836.58.86807298987499
846.58.86807298987499
856.58.86807298987499
866.58.86807298987499
876.58.86807298987499
886.58.86807298987499
896.58.86807298987499
906.58.86807298987499
916.58.86807298987499
926.58.86807298987499
936.58.86807298987499
946.58.86807298987499
956.58.86807298987499
966.58.86807298987499
976.58.86807298987499
986.58.86807298987499
997.510.9624272546599
1007.510.9624272546599
1017.510.9624272546599
1027.510.9624272546599
1037.510.9624272546599
1047.510.9624272546599
1057.510.9624272546599
1067.510.9624272546599
1077.510.9624272546599
1087.510.9624272546599
1097.510.9624272546599
1107.510.9624272546599
1117.510.9624272546599
1127.510.9624272546599
1137.510.9624272546599
1147.510.9624272546599
1157.510.9624272546599
1167.510.9624272546599
1177.510.9624272546599
1187.510.9624272546599
1197.510.9624272546599
1207.510.9624272546599
1217.510.9624272546599
1227.510.9624272546599
1237.510.9624272546599
1248.513.1658991734021
1258.513.1658991734021
1268.513.1658991734021
1278.513.1658991734021
1288.513.1658991734021
1298.513.1658991734021
1308.513.1658991734021
1318.513.1658991734021
1328.513.1658991734021
1338.513.1658991734021
1348.513.1658991734021
1358.513.1658991734021
1368.513.1658991734021
1378.513.1658991734021
1388.513.1658991734021
1398.513.1658991734021
1408.513.1658991734021
1418.513.1658991734021
1428.513.1658991734021
1438.513.1658991734021
1448.513.1658991734021
1458.513.1658991734021
1469.515.4703077463909
1479.515.4703077463909
1489.515.4703077463909
1499.515.4703077463909
1509.515.4703077463909
1519.515.4703077463909
1529.515.4703077463909
1539.515.4703077463909
1549.515.4703077463909
1559.515.4703077463909
1569.515.4703077463909
1579.515.4703077463909
1589.515.4703077463909
1599.515.4703077463909
1609.515.4703077463909
16110.517.8689050549175
16210.517.8689050549175
16310.517.8689050549175
16410.517.8689050549175
16510.517.8689050549175
16610.517.8689050549175
16710.517.8689050549175
16810.517.8689050549175
16910.517.8689050549175
17010.517.8689050549175
17110.517.8689050549175
17210.517.8689050549175
17310.517.8689050549175
17410.517.8689050549175
17510.517.8689050549175
17610.517.8689050549175
17710.517.8689050549175
17810.517.8689050549175
17910.517.8689050549175
18010.517.8689050549175
18110.517.8689050549175
18210.517.8689050549175
18310.517.8689050549175
18410.517.8689050549175
18510.517.8689050549175
18610.517.8689050549175
18710.517.8689050549175
18810.517.8689050549175
18910.517.8689050549175
19010.517.8689050549175
19110.517.8689050549175
19210.517.8689050549175
19310.517.8689050549175
19410.517.8689050549175
19510.517.8689050549175
19610.517.8689050549175
19710.517.8689050549175
19810.517.8689050549175
19910.517.8689050549175
20010.517.8689050549175
20110.517.8689050549175
20210.517.8689050549175
20310.517.8689050549175
20410.517.8689050549175
20510.517.8689050549175
20610.517.8689050549175
20710.517.8689050549175
20810.517.8689050549175
20910.517.8689050549175
21010.517.8689050549175
21110.517.8689050549175
21210.517.8689050549175
21310.517.8689050549175
21410.517.8689050549175
21510.517.8689050549175
21610.517.8689050549175
21710.517.8689050549175
21810.517.8689050549175
21910.517.8689050549175
22010.517.8689050549175
22110.517.8689050549175
22210.517.8689050549175
22310.517.8689050549175
22410.517.8689050549175
22510.517.8689050549175
22610.517.8689050549175
22710.517.8689050549175
22810.517.8689050549175
22910.517.8689050549175
23010.517.8689050549175
23110.517.8689050549175
23210.517.8689050549175
23310.517.8689050549175
23410.517.8689050549175
23510.517.8689050549175
23610.517.8689050549175
23710.517.8689050549175
23810.517.8689050549175
23910.517.8689050549175
24010.517.8689050549175
24110.517.8689050549175
24210.517.8689050549175
24310.517.8689050549175
24410.517.8689050549175
24510.517.8689050549175
24610.517.8689050549175
24710.517.8689050549175
24810.517.8689050549175
24910.517.8689050549175
25010.517.8689050549175
25110.517.8689050549175
25210.517.8689050549175
25310.517.8689050549175
25410.517.8689050549175
25510.517.8689050549175
25610.517.8689050549175
25710.517.8689050549175
25810.517.8689050549175
25910.517.8689050549175
26010.517.8689050549175
26110.517.8689050549175
26210.517.8689050549175
26310.517.8689050549175
26410.517.8689050549175
26510.517.8689050549175
26610.517.8689050549175
26710.517.8689050549175
26810.517.8689050549175
26910.517.8689050549175
27010.517.8689050549175
27110.517.8689050549175
27210.517.8689050549175
27310.517.8689050549175
27410.517.8689050549175
27510.517.8689050549175
27610.517.8689050549175
27710.517.8689050549175
27810.517.8689050549175
27910.517.8689050549175
28010.517.8689050549175
28110.517.8689050549175
28210.517.8689050549175
28310.517.8689050549175
28410.517.8689050549175
28510.517.8689050549175
28610.517.8689050549175
28710.517.8689050549175
28810.517.8689050549175
28910.517.8689050549175
29010.517.8689050549175
29112.522.9267557005424


Maximum Likelihood Estimation of Lambda
> summary(mypT)
bcPower Transformation to Normality 
  Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
x    1.6796        1.68       1.3756       1.9836
Likelihood ratio test that transformation parameter is equal to 0
 (log transformation)
                           LRT df       pval
LR test, lambda = (0) 264.7451  1 < 2.22e-16
Likelihood ratio test that no transformation is needed
                           LRT df       pval
LR test, lambda = (1) 24.92264  1 5.9678e-07







Click here to blog (archive) this computation